
 

Reference

 

MAX



 

2

 

Copyright and Trademark Notices

 

This manual is copyright © 2000/2001 Cycling ’74. 

Max is copyright © 1990-2001 Cycling ’74/IRCAM, l’Institut de Récherche et Coordination 
Acoustique/Musique. 

 

Credits

 

Original Max Documentation: Chris Dobrian

Max 4.0 Reference Manual: David Zicarelli, Gregory Taylor, Adam Schabtach, Joshua Kit Clayton, 
jhno, Richard Dudas

Max 4.0 Manual page example patches: R. Luke DuBois, Darwin Grosse, Ben Nevile, Joshua Kit 
Clayton, David Zicarelli

Cover Design: Lilli Wessling Hart

Graphic Design:Gregory Taylor



 

MRfront 

 

3 - MRfront Objects

 

This volume, 

 

Max Reference,

 

 contains information about each individual Max object. It includes:

 

Max Objects

 

Contains precise technical information on the workings of each of the built-in and external 
objects supplied with Max, organized in alphabetical order.

 

Max Object Thesaurus

 

Consists of a reverse index of Max objects, alphabetized by keyword rather than by object 
name. Use this Thesaurus when you want to know what object(s) are appropriate for the task 
you are trying to accomplish, then look up those objects by name in the 

 

Objects

 

 section.

 

Manual Conventions

 

The central building block of Max is the object. Names of objects are always displayed in bold 
type, 

 

like

 

 

 

this

 

.

Messages (the arguments that are passed to and from objects) are displayed in plain type,

 

 

 

like this.

 

The name of a Max object displayed in blue type

 

 like this

 

 is hyperlinked to the reference page for 
that object in this document. Clicking on the blue text will jump to the reference page for that 
object.

In the “See Also” sections, anything in regular type is a reference to a section of either this manual 
or the 

 

Max Tutorials and Topics

 

 manual.

 

Reading the manual online

 

The table of contents of the MSP documentation is bookmarked, so you can view the bookmarks 
and jump to any topic listed by clicking on its names. To view the bookmarks, click on the icon 
that looks like this:

Click on the triangle next to each section to expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s Find 
command. Choose Find from the Tools menu, then type in a word you’re looking for. 

 

Find

 

 will 
highlight the first instance of the word, and 

 

Find Again

 

 takes you to subsequent instances.



  

!-

 

 Subtraction object
(inlets reversed)

                               
The !- object functions just like the - object, but the inlet order is reversed.

Input
int In right inlet: The number in the left inlet is subtracted from the number, and the 

result is sent out the outlet.

In left inlet: The number is stored, to be subtracted from a number received in the 
right inlet.

float Converted to int, unless!- has a float argument.

bang In left inlet: Performs the subtraction with the numbers currently stored. If there 
is no argument, - initially holds 0.

Arguments
int or float Optional. Sets the initial value, to be subtracted from a number received in the left 

inlet. Float argument causes the numbers to be subtracted as floats.

Output
int The difference between the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples

- with the inputs swapped
 4



 

!- 

 

Subtraction object
(inlets reversed)

                    
See Also

expr Evaluate a mathematical expression
!/ Division object (inlets reversed)
!= Compare two numbers, output 1 if they are not equal
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max
5 



  

!/

 

 Division object
(inlets reversed)

                                 
The !/ object functions just like the / object, but the inlet order is reversed.

Input
int In left inlet: The number is stored as the divisor (the number to be divided into the 

number in the right inlet).

In right inlet: The number is divided by the number in the right inlet, and the 
result is sent out the outlet.

float Converted to int, unless !/ has a float argument.

bang In left inlet: Performs the division with the numbers currently stored.

Arguments
int or float Optional. Sets an initial value for the divisor. If there is no argument, the divisor is 

set to 1 initially. Float argument causes the numbers to be divided as floats. (Divi-
sion by 0 is not allowed. Int division by 0 will have the same result as dividing by 1. 

Float division by 0 will always cause an output of -231.)

Output
int The two numbers in the inlets are divided, and the result is sent out the outlet.

float Only if there is an argument with a decimal point.

Examples

/ with the inputs swapped
 6



 

!/ 

 

Division object
(inlets reversed)

                    
See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!= Compare two numbers, output 1 if they are not equal
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max
7 



 

 8

 

!=

 

 Compare two numbers,
output 

 

1

 

 if they are not equal

 

Input

 

int

 

In left inlet: The number is compared with the number in the right inlet. If the two 
numbers are not equal, 

 

!=

 

 outputs 

 

1

 

. If they are equal 

 

!=

 

 outputs 

 

0

 

.

In right inlet: The number is stored, to be compared with a number received in 
the left inlet.

 

float

 

Converted to int before comparison, unless 

 

!=

 

 has a float argument.

 

bang

 

In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, 

 

!=

 

 initially holds 

 

0

 

 for comparison.

 

list

 

In left inlet: Compares first and second number, outputs 

 

1

 

 if they are not equal, 

 

0

 

 if 
they are equal.

 

Arguments

 

int

 

 or 

 

float

 

Optional. Sets the initial value, to be compared with a number received in the left 
inlet. Float argument forces a float comparison.

 

Output

 

int 1

 

 if the numbers in the inlets are not equal, 

 

0

 

 if they are equal.

 

Examples

 

Test if two numbers are 

 

not

 

 equal

 

See Also

 

select

 

Select certain inputs, pass the rest on

 

split

 

Look for a range of numbers

 

<

 

Is less than

 

, comparison of two numbers

 

<=

 

Is less than or equal to

 

, comparison of two numbers

 

==

 

Compare two numbers, output 

 

1

 

 if they are equal

 

>

 

Is greater than

 

, comparison of two numbers

 

>=

 

Is greater than or equal to

 

, comparison of two numbers
Tutorial 15 Making decisions with comparisons



 

+ 

 

Add two numbers,
output the result

                                                              
Input
int In left inlet: The number is added to the number in the right inlet, and the result is 

sent out the outlet.

In right inlet: The number is stored for addition to a number received in the left 
inlet.

float Converted to int, unless + has a float argument.

bang In left inlet: Performs the addition with the numbers currently stored. If there is 
no argument, + initially holds 0.

list In left inlet: The first number is added to the second number, and the result is sent 
out the outlet.

set In left inlet: The word set, followed by a number, adds that number to the number 
in the right inlet but nothing is sent out. A subsequent bang sends out the result.

The set message functions similarly for all the arithmetic operators, logical operators, and bitwise 
operators: +, -, *, /, %, <, <=, ==, !-, !/, !=, >=, >, &&, ||, &, |, <<, and >>. The number is used as the 
left operand, and the expression is evaluated, but the result is not sent out.

Arguments
int or float Optional. Sets the initial value, to be added to a number received in the left inlet. 

Float argument causes the numbers to be added as floats.

Output
int The sum of the two numbers received in the inlets.

float Only if there is an argument with a decimal point.
9 



+  Add two numbers,
output the result

nt
Examples

See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!/ Division object (inlets reversed)
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max

Normally adds ints Floats are truncated before addition... unless there is a float argume
 10



- Subtract two numbers,
output the result
Input
int In left inlet: The number in the right inlet is subtracted from the number, and the 

result is sent out the outlet.

In right inlet: The number is stored, to be subtracted from a number received in 
the left inlet.

float Converted to int, unless - has a float argument.

bang In left inlet: Performs the subtraction with the numbers currently stored. If there 
is no argument, - initially holds 0.

list In left inlet: The second number is subtracted from the first number, and the 
result is sent out the outlet.

Arguments
int or float Optional. Sets the initial value, to be subtracted from a number received in the left 

inlet. Float argument causes the numbers to be subtracted as floats.

Output
int The difference between the two numbers received in the inlets.

float Only if there is an argument with a decimal point.
11 



-  Subtract two numbers,
output the result

ent
Examples

See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!/ Division object (inlets reversed)
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max

Subtracted as ints Floats are truncated before subtraction… …unless there is a float argum
 12



* Multiply two numbers,
output the result

t

Input
int In left inlet: The number is multiplied by the number in the right inlet, and the 

result is sent out the outlet.

In right inlet: The number is stored for multiplication with a number received in 
the left inlet.

float Converted to int before multiplication, unless * has a float argument.

bang In left inlet: Performs the multiplication with the numbers currently stored. If 
there is no argument, * initially holds 0 as a multiplier.

list In left inlet: The first number is multiplied by the second number, and the result is 
sent out the outlet.

Arguments
int or float Optional. Sets the initial value, to be multiplied by a number received in the left 

inlet. Float argument causes the numbers to be multiplied as floats.

Output
int The product of the two numbers received in the inlets.

float Only if there is an argument with a decimal point.

Examples

Multiplied as ints Floats are truncated before multiplication… …unless there is a float argumen
13 



*  Multiply two numbers,
output the result
See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!/ Division object (inlets reversed)
!= Compare two numbers, output 1 if they are not equal
+ Add two numbers, output the result
- Subtract two numbers, output the result
/ Divide two numbers, output the result
% Divide two numbers, output the remainder
<< Shift all bits to the left
Tutorial 8 Doing math in Max
 14



/ Divide two numbers,
output the result
Input
int In left inlet: The number is divided by the number in the right inlet, and the result 

is sent out the outlet.

In right inlet: The number is stored as the divisor (the number to be divided into 
the number in the left inlet).

float Converted to int, unless / has a float argument.

bang In left inlet: Performs the division with the numbers currently stored.

list In left inlet: The first number is divided by the second number, and the result is 
sent out the outlet.

Arguments
int or float Optional. Sets an initial value for the divisor. If there is no argument, the divisor is 

set to 1 initially. Float argument causes the numbers to be divided as floats. (Divi-
sion by 0 is not allowed. Int division by 0 will have the same result as dividing by 1. 

Float division by 0 will always cause an output of -231.)

Output
int The two numbers in the inlets are divided, and the result is sent out the outlet.

float Only if there is an argument with a decimal point.
15 



/  Divide two numbers,
output the result
Examples

See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!/ Division object (inlets reversed)
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
% Divide two numbers, output the remainder
Tutorial 8 Doing math in Max

Remainder is discarded Floats are truncated before division… …unless there is a float argument
 16



% Divide two numbers,
output remainder

17 

Input
int In left inlet: The number is divided by the number in the right inlet, and the 

remainder is sent out the outlet.

In right inlet: The number is stored as the divisor (the number to be divided into 
the number in the left inlet) for calculating the remainder.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored.

list In left inlet: The first number is divided by the second number, and the remainder 
is sent out the outlet.

Arguments
int Optional. Sets an initial value for the divisor. If there is no argument, the divisor is 

set to 1 initially.

Output
int When the two numbers in the inlets are divided, the remainder is sent out the out-

let. % is called the modulo operator.

Examples

Find the remainder of a division

See Also

expr Evaluate a mathematical expression
!- Subtraction object (inlets reversed)
!/ Division object (inlets reversed)
+ Add two numbers, output the result
- Subtract two numbers, output the result
* Multiply two numbers, output the result
/ Divide two numbers, output the result
Tutorial 8 Doing math in Max



 18

<  Is less than,
comparison of two numbers

Input
int In left inlet: If the number is less than the number in the right inlet, < outputs 1. 

Otherwise, < outputs 0.

In right inlet: The number is stored to be compared with a number received in the 
left inlet.

float Converted to int before comparison, unless < has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, < initially holds 0 for comparison.

list In left inlet: If the first number is less than the second number, < outputs 1. Other-
wise, < outputs 0.

Arguments
int or float Optional. Sets the initial value, to be compared with a number received in the left 

inlet. Float argument forces a float comparison.

Output
int 1 if the number in the left inlet is less than the number in the right inlet. 0 if the 

number in the left inlet is greater than or equal to the number in the right inlet.

Examples

See Also

!= Compare two numbers, output 1 if they are not equal
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Number on left is less than number on right Number on left is not less than number on right



<= Is less than or equal to,
comparison of two numbers

19 

Input
int In left inlet: If the number is less than or equal to the number in the right inlet, <= 

outputs 1. Otherwise, <= outputs 0.

In right inlet: The number is stored to be compared with a number received in the 
left inlet.

float Converted to int before comparison, unless <= has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, <= initially holds 0 for comparison.

list In left inlet: If the first number is less than or equal to the second number, <= out-
puts 1. Otherwise, <= outputs 0.

Arguments
int or float Optional. Sets the initial value, to be compared with a number received in the left 

inlet. Float argument forces a float comparison.

Output
int 1 if the number in the left inlet is less than or equal to the number in the right inlet. 

0 if the number in the left inlet is greater than the number in the right inlet.

Examples 

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Is less than... or equal to Is not less than or equal to



 20

==  Compare two numbers,
output 1 if they are equal

Input
int In left inlet: The number is compared with the number in the right inlet. If the two 

numbers are equal, == outputs 1. If they are not equal == outputs 0.

In right inlet: The number is stored to be compared with a number received in the 
left inlet.

float Converted to int before comparison, unless == has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, == initially holds 0 for comparison.

list In left inlet: Compares first and second number, outputs 1 if they are equal, 0 if 
they are not equal.

Arguments
int or float Optional. Sets the initial value, to be compared with a number received in the left 

inlet. Float argument forces a float comparison.

Output
int 1 if the numbers in the inlets are equal, 0 if they are not equal.

Examples

See Also

select Select certain inputs, pass the rest on
split Look for a range of numbers
!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

The numbers are equal The numbers are not equal Using == 0 as a logical “not”



> Is greater than,
comparison of two numbers

21 

Input
int In left inlet: If the number is greater than the number in the right inlet, > outputs 1. 

Otherwise, > outputs 0.

In right inlet: The number is stored to be compared with a number received in the 
left inlet.

float Converted to int before comparison, unless > has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, > initially holds 0 for comparison.

list In left inlet: If the first number is greater than the second number, > outputs 1. 
Otherwise, > outputs 0.

Arguments
int or float Optional. Sets the initial value, to be compared with a number received in the left 

inlet. Float argument forces a float comparison.

Output
int 1 if the number in the left inlet is greater than the number in the right inlet. 0 if the 

number in the left inlet is less than or equal to the number in the right inlet.

Examples

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
>= Is greater than or equal to, comparison of two numbers
Tutorial 15 Making decisions with comparisons

The number on the left is greater The number on the left is not greater



 22

>=  Is greater than or equal to,
comparison of two numbers

Input
int In left inlet: If the number is greater than or equal to the number in the right inlet, 

>= outputs 1. Otherwise, >= outputs 0.

In right inlet: The number is stored to be compared with a number received in the 
left inlet.

float Converted to int before comparison, unless >= has a float argument.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, >= initially holds 0 for comparison.

list In left inlet: If the first number is greater than or equal to the second number, >= 
outputs 1. Otherwise, >= outputs 0.

Arguments
int or float Optional. Sets the initial value, to be compared with a number received in the left 

inlet. Float argument forces a float comparison.

Output
int 1 if the number in the left inlet is greater than or equal to the number in the right 

inlet. 0 if the number in the left inlet is less than the number in the right inlet.

Examples

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
Tutorial 15 Making decisions with comparisons

Is greater than... or equal to Is not greater than or equal to



& Bitwise intersection
of two numbers

23 

Input
int In left inlet: The number is compared, in binary form, with the number in the 

right inlet. The output is a number composed of those bits which are 1 in both 
numbers.

In right inlet: The number is stored for comparison with a number received in the 
left inlet.

float Converted to int.

bang In left inlet: Performs the comparison with the numbers currently stored. If there 
is no argument, & initially holds 0 for comparison.

list In left inlet: Compares the first and second numbers bit-by-bit, and outputs a 
number composed of those bits which are 1 in both numbers.

Arguments
int Optional. Sets an initial value to be compared with a number received in the left 

inlet.

Output
int The two numbers received in the inlets are compared, one bit at a time. If a bit is 1 

in both numbers, it will be 1 in the output number, otherwise it will be 0 in the 
output number.

Examples

See Also

&& If both numbers are non-zero, output 1
| Bitwise union of two numbers
|| If either of two numbers is non-zero, output 1

Nonzero bits shared by both numbers Can be used as an odd/even detector



 24

&&  If both numbers are non-zero,
output 1

Input
int If the number in both inlets is not 0, then the output is 1. If the number in one or 

both of the inlets is 0, then the output is 0. A number in the left inlet triggers the 
output.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored. If there is 
no argument, && initially holds 0.

list In left inlet: If both the first and second numbers are not 0, then the output is 1. 
Otherwise, the output is 0.

Arguments
int Optional. Sets an initial value to be stored by &&. A number in the right inlet 

changes the value set by the argument.

Output
int If the number in the left inlet and the number in the right inlet (or specified by the 

argument) are both not 0, then the output is 1. Otherwise, the output is 0.

Examples

See Also

& Bitwise intersection of two numbers
| Bitwise union of two numbers
|| If either of two numbers is non-zero, output 1
Tutorial 15 Making decisions with comparisons

Both numbers are not 0 Used to combine comparisons



| Bitwise union
of two numbers

25 

Input
int In left inlet: Outputs a number composed of all those bits which are 1 in either of 

the two numbers.

In right inlet: The number is stored for combination with a number received in 
the left inlet.

float Converted to int.

bang In left inlet: Performs the calculation with the numbers currently stored. If there is 
no argument, | initially holds 0.

list In left inlet: Combines the first and second numbers bit-by-bit, and outputs a 
number composed of all those bits which are 1 in either of the two numbers.

Arguments
int Optional. Sets an initial value to be or-ed with a number received in the left inlet.

Output
int All the nonzero bits of the two numbers received in the inlets are combined. If a 

bit is 1 in either one of the numbers, it will be 1 in the output number, otherwise it 
will be 0 in the output number.

Examples

See Also

& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1
|| If either of two numbers is non-zero, output 1

All non-zero bits are combined Can be used to pack two numbers into one int



 26

||  If either of two numbers
is non-zero, output 1

Input
int If the number in either inlet is not 0, then the output is 1. If the number in both of 

the inlets is 0, then the output is 0. A number in the left inlet triggers the output.

float Converted to int.

bang In left inlet: Performs the operation with the numbers currently stored. If there is 
no argument, || initially holds 0.

list In left inlet: If either the first or second number is not 0, then the output is 1. Oth-
erwise, the output is 0.

Arguments
int Optional. Sets an initial value to be stored by ||. A number in the right inlet 

changes the value set by the argument.

Output
int If either the number in the left inlet or the number in the right inlet (or specified 

by the argument) is not 0, then the output is 1. Otherwise, the output is 0.

Examples

See Also

& Bitwise intersection of two numbers
&& If both numbers are non-zero, output 1
| Bitwise union of two numbers
Tutorial 15 Making decisions with comparisons

One of the numbers is not 0 Used to combine comparisons



<< Shift all bits
to the left

27 

Input
int In left inlet: All bits of the number, in binary form, are shifted to the left by a cer-

tain number of bits. The resulting number is sent out the outlet. 

In right inlet: The number is stored as the number of bits to left-shift the number 
in the left inlet.

float Converted to int.

bang In left inlet: Performs the bit-shift with the numbers currently stored. If there is no 
argument, << initially holds 0 as the number of bits by which to shift.

list In left inlet: The first number is bit-shifted to the left by the number of bits speci-
fied by the second number.

Arguments
int Optional. Sets an initial value for the number of bits by which to shift leftward.

Output
int The number in the left inlet is bit-shifted to the left by a certain number of bits. 

The number of bits by which to shift is specified by the number in the right inlet. 
The output is the resulting bit-shifted number.

Examples

Same effect as multiplying by a power of 2

See Also

* Multiply two numbers, output the result
>> Shift all bits to the right



 28

>>  Shift all bits
to the right

Input
int In left inlet: All bits of the number, in binary form, are shifted to the right by a cer-

tain number of bits. The resulting number is sent out the outlet. 

In right inlet: The number is stored as the number of bits to right-shift the num-
ber in the left inlet.

float Converted to int.

bang In left inlet: Performs the bit-shift with the numbers currently stored. If there is no 
argument, >> initially holds 0 as the number of bits by which to shift.

list In left inlet: The first number is bit-shifted to the right by the number of bits spec-
ified by the second number.

Arguments
int Optional. Sets an initial value for the number of bits by which to shift rightward.

Output
int The number in the left inlet is bit-shifted to the right by a certain number of bits. 

The number of bits by which to shift is specified by the number in the right inlet. 
The output is the resulting bit-shifted number.

Examples

Same effect as dividing by a power of 2

See Also

!/ Division object (inlets reversed)
<< Shift all bits to the left



abs Output the absolute
value of the input

29 

Input
int The absolute (non-negative) value of the input is sent out the output.

float Converted to int, unless abs has a float argument.

int or float Optional. Float argument forces a float output.

Arguments
int or float Optional. Float argument forces a float output.

Output
int The absolute value of the input.

float Only if there is an argument with a decimal point.

Examples

See Also

expr Evaluate a mathematical expression
Tutorial 14 Sliders and dials

Output is nonnegative Used here to invert input



 30

absolutepath  Convert a file name
to an absolute path

Input
any symbol A file name or path as a symbol. The absolutepath object converts a file name or 

path to an absolute path, resolving any aliases in doing so.

Arguments
None.

Output
any symbol If the incoming file name or path is found, the output is an absolute path.If the file 

is not found, absolutepath outputs the symbol notfound.

Examples

See Also

absolutepath Convert a file name to an absolute path
dropfile Define a region for dragging and dropping a file
opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving
strippath Get a filename from a full pathname
File Preferences



acos Arc-cosine function

31 

Input
float or int Input to a arc-cosine function.

bang In left inlet: Calculates the arc-cosine of the number currently stored. If there is no 
argument, acos initially holds 0.

Arguments
float or int Optional. Sets the initial value for the arc-cosine function.

Output
float or int The arc-cosine of the input.

Examples

See Also

asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



accum  Store, add to,
and multiply a number
Input
int In left inlet: Replaces the value stored in accum, and sends the new value out the 

outlet.

In middle inlet: The number is added to the stored value, without triggering out-
put.

In right inlet: The stored value is multiplied by the input, without triggering out-
put.

float In left and middle inlet: Converted to int, unless accum has a float argument.

In right inlet: Multiplication is done with floats, even if the value is stored as an 
int.

bang In left inlet: Outputs the value currently stored in accum.

set In left inlet: The word set, followed by a number, sets the stored value to that num-
ber, without triggering output.

Arguments
int or float Optional. Sets the initial value stored in accum. An argument with a decimal point 

causes the value to be stored as a float.

Output
int The value currently held by accum.

float Only if there is an argument with a decimal point.
 32



accum Store, add to,
and multiply a number
Examples

See Also

counter Count the bang messages received, output the count
float Store a decimal number
int Store an integer value
Tutorial 21 Storing numbers

Add to and/or multiply a stored value Used here to increment by different amounts
33 



 34

active  Send 1 when patcher window is active,
0 when inactive

Input
There are no inlets. Output is triggered automatically when the patcher window is 
activated or deactivated.

Arguments
None.

Output
int When the patcher window that contains active is activated, active sends out 1. 

When the window is made inactive, active sends out 0. 

Examples

Turn on a process or open a gate when the window is made active

See Also

closebang Send a bang when patcher window is closed
loadbang Send a bang automatically when patch is loaded
Tutorial 40 Automatic actions



anal Make a histogram of
number pairs received

35 

Input
int Reports how many times this number and the previously received number have 

occurred in immediate succession. (The first time a number is received, there has 
been no previous number, so nothing happens.)

reset Erases the most recently received number from the memory of the anal object. 
The next number to be received gets stored in its place, to serve as the next “previ-
ous” value (but nothing else happens).

clear Erases the memory of the anal object entirely, but retains the most recently 
received number to use as the next “previous” value.

Arguments
int Optional. Sets a maximum limit for how many different number pairs can be kept 

track of by anal. The maximum number of different pairs is 1024. If no argument 
is present, anal can store up to 128 different pairs.

Output
list The first two numbers in the list are the two most recently received numbers, and 

the third number shows how many times that particular succession of two num-
bers has been received. This list of three numbers is designed to be used as input 
to the prob object, to create a probability matrix of transitions from one number 
to another (known as a first-order Markov chain). 

Examples

Keep track of number pairs and their relative frequency of occurrence;
pass the information to prob to generate similar transitions

See Also

Histo Make a histogram of the numbers received
prob Make weighted random series of numbers



 36

append  Append arguments
at the end of a message

Input
set The word set, followed by any message, will replace the message stored in append, 

without triggering output.

anything else The message stored in append is appended, preceded by a space, to the end of any 
message that is received in the inlet, and the combined message is sent out the 
outlet.

Arguments
anything Optional. Sets the message that will be appended to the end of incoming mes-

sages.

Output
anything The message received in the inlet is combined with the message stored in append, 

and then sent out the outlet.

Examples

Symbols can be combined into meaningful messages with append

See Also

prepend Put one message at the beginning of another
Tutorial 25 Managing messages



appledvd Control Apple
DVD Player application
The appledvd object allows Max to control the Apple DVD Player application (version 2.1 or later 
required). Both Max and the Apple DVD Player application must be running simultaneously—
appledvd sends and receives Apple Events from the DVD Player application. This can be somewhat 
awkward since you’ll need to find a way to make the DVD Player application show the video image 
while making Max the foreground application. Two monitors may be the best solution. Also note 
that the Apple DVD Player uses a lot of processor time to decompress video and audio data from 
the disc, so doing other processing in Max may be severely limited during playback.

Here is a quick glossary of some of the terms used in the appledvd object:

A subpicture is a still image that can be overlaid on the video. Subpictures may be text (subtitles) or 
graphics. 

A title refers to a complete work on a DVD (such as a movie). Some DVDs may have several titles, 
such as a movie and a trailer. 

A chapter is a section of a title. The number of chapters in a title is arbitrary and up to the author of 
the DVD.

Input
int Moves the current playback position to the specified time (in seconds from the 

beginning of the DVD).

float Converted to int

bang Reports the time of the current playback position (in seconds from the beginning 
of the current title) out the left outlet.

play Starts playback from the current position.

stop Stops playback.

pause Pauses playback.

presentation The word presentation, followed by a 1 or 0, turns presentation mode on or off. 
When on, presentation hides the menu bar and turns the background black to 
simulate a “presentation” of the video on the computer screen. 

size Sets the size of the image on the screen. The arguments to size are small, half, normal, 
and full. The exact interpretation of these “sizes” depends on your monitor. 

viewer The word viewer, followed by a 1 or 0, shows or hides the video image.

controller The word controller, followed by a 1 or 0, shows or hides the controller window 
(with transport controls etc.) 

mute The word mute, followed by a 1 or 0, mutes or unmutes audio playback from the 
disc. 
37 



appledvd  Control Apple
DVD Player application
get The get message allows you to obtain information about the DVD. The word get is 
followed by a keyword argument, and the result is sent out the right outlet of the 
appledvd object. Keywords are:

Keyword Description
disk Outputs 1 if the DVD is mounted, 0 otherwise. 

mute Outputs 1 if the audio is muted, 0 otherwise. 

volume Outputs the current volume level (0 - 10) 

numangles Outputs the number of camera angles available at the current 
playback location.

numaudios Outputs the number of audio tracks available at the current play-
back location. 

numchapters Outputs the number of chapters available at the current playback 
location. 

numsubpictures Outputs the number of subpictures available at the current play-
back location. 

titles Outputs the number of available titles. 

angle Outputs the current angle. 

audio Outputs the number of the current audio track. 

chapter Outputs the number of the current chapter. 

subpicture Outputs the number of the current subpicture. 

title Outputs the number of the current title. 

volume The word volume, followed by a number between 0 and 10, sets the current audio 
volume level 

angle The word angle, followed by a number between 0 and 360, sets the current camera 
angle 

audio The word audio, followed by a number between 1 and the number of audio tracks, 
sets the current audio track 

chapter The word chapter, followed by a number between 1 and the number of chapters, 
sets the current chapter 

subpicture The word subpicture, followed by a number between 1 and the number of subpic-
tures, sets the current subpicture 
 38



appledvd Control Apple
DVD Player application
title The word title, followed by a number between 1 and the number of titles, sets the 
current title 

menu The word menu causes the player to go to the menu portion of the DVD 

titlemenu The word titlemenu causes the player to go to the title menu portion of the DVD 

return The word return selects the return feature

up The word up presses the up arrow key on the keyboard (used to navigate a menu) 

down The word down presses the down arrow key on the keyboard (used to navigate a 
menu) 

left The word left presses the left arrow key on the keyboard (used to navigate a menu) 

right The word right presses the right arrow key on the keyboard (used to navigate a 
menu) 

enter The word enter presses the enter key on the keyboard (used to select the current 
menu choice) 

open Makes the Apple DVD Player the frontmost application if it is running.

(mouse) Double-clicking on the appledvd object is the same as sending the open message.

Output
int Out left outlet: The current time, in seconds from the beginning of the current 

title, in response to a bang message 

int Out right outlet: Various values in response to the get message (see listing above). 
39 



appledvd  Control Apple
DVD Player application
Examples

See Also

cd Control playback of audio CDs
movie Play a QuickTime movie in a window
vdp Control a videodisc player through the serial port
 40



asin Arc-sine function

41 

Input
float or int Input to a arc-sine function.

bang In left inlet: Calculates the arc-sine of the number currently stored. If there is no 
argument, asin initially holds 0.

Arguments
float or int Optional. Sets the initial value for the arc-sine function.

Output
float or int The arc-sine of the input.

Examples

See Also

acos Arc-cosine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



 42

atan  Arc-tangent function

Input
float or int Input to a arc-tangent function.

bang In left inlet: Calculates the arc-tangent of the number currently stored. If there is 
no argument, atan initially holds 0.

Arguments
float or int Optional. Sets the initial value for the arc-tangent function.

Output
float or int The arc-tangent of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



atan2 Arc-tangent function
(two variables)

43 

Input
float or int In left input: x value input to an arc-tangent function.

In right input: y value input to an arc-tangent function.

bang In left inlet: Calculates the arc-tangent of the numbers currently stored. If there 
are no arguments, atan2 initially holds 0 for both input values.

Arguments
float or int Optional. Two ints may be used to set the initial value for the arc-tangent func-

tion.

Output
float or int The arc-tangent the input values (i.e. Arc-tangent(y/x)).

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



bag  Store a collection
of numbers
Input
int In left inlet: The number is either added to or deleted from the collection of num-

bers stored in bag, depending on the number in the right inlet.

In right inlet: The number is stored as an indicator of whether to include or delete 
the next number received in the left inlet. If non-zero, the number received in the 
left inlet is added to the bag. If 0, the number is deleted from the bag.

No output is triggered by a number received in either inlet.

float Converted to int.

bang In left inlet: Causes bag to send all its numbers out the outlet.

clear In left inlet: Deletes the entire contents of the bag.

list In left inlet: If the second number is not 0, the first number is included in the bag. 
If the second number is 0, the first number is deleted from the bag.

send In left inlet: The word send, followed by the name of a receive object, sends the 
result of a bang message to all receive objects with that name, instead of out the bag 
object’s outlet.

length In left inlet: Reports how many numbers are currently stored in the bag.

cut In left inlet: Sends out the oldest (earliest received) number stored in the bag, and 
deletes it from the bag.

Arguments
any symbol Optional. Causes bag to store duplicate numbers. If there is no argument, bag will 

store only one of each number at a time. The argument must not be a number.

Output
int When bang is received in the left inlet, all the numbers stored in bag are sent out 

one at a time, in reverse order from that in which they were stored.

When cut is received in the left inlet, the oldest stored number is sent out.

When length is received in the left inlet, the number of items in the bag is sent out.
 44



bag Store a collection
of numbers
Examples

See Also

coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers
offer Store x,y pairs of numbers temporarily
Data Structures Ways of storing data in Max

Store a collection of numbers Used here to detect held notes
45 



 46

bangbang / b  Send a bang to
many places, in order

Input
anything Causes a bang to be sent out all outlets, in right-to-left order.

Arguments
int Optional. Sets the number of outlets. Limited between 1 and 10. Any number 

greater than 10 is set to 10; any number less than 1 is set to 2. If there is no argu-
ment, there will be 2 outlets.

float Converted to int.

Output
bang When a message is received in the inlet, bang is sent out each outlet, in order from 

right to left.

Examples

See Also

button Flash on any message, send a bang
trigger Send input to many places, in order
Tutorial 7 Right-to-left order

Order is normally right-to-left Order is specified by bangbang



bendin Output received
MIDI pitch bend values
Input
(MIDI) bendin receives its input from a MIDI pitch bend message received from a MIDI 

input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of an OMS Input Device, sets 
the port from which the object receives incoming pitch bend messages. The word 
port is optional and may be omitted.

(mouse) Double-clicking on a bendin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming pitch bend messages. 

If there is no argument, bendin receives from all channels on all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to receive pitch bend messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
int If a specific channel number is included in the argument, there is only one outlet. 

The output is the incoming pitch bend value from 0-127 (the most significant 
byte of the MIDI pitch bend message) on the specified channel and port.

If there is no channel number specified by the argument, bendin will have a sec-
ond outlet, on the right, which will output the channel number of the incoming 
pitch bend message.
47 



bendin  Output received
MIDI pitch bend values
Examples

Pitch bend messages can be received from everywhere, 
a specific port, or a specific port and channel

See Also

bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiin Output received raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
OMS Using Max with OMS
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs
 48



bendout Transmit MIDI
pitch bend messages
Input
int In left inlet: The number is transmitted as a MIDI pitch bend value on the speci-

fied channel and port. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to transmit 
the pitch bend messages.

float Converted to int.

list In left inlet: The first number is the pitch bend value, and the second number is 
the channel, of a MIDI pitch bend message, transmitted on the specified channel 
and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or a MIDI output device name, 
specifies the port used to transmit MIDI messages. The word port is optional and 
may be omitted.

(mouse) Double-clicking on a bendout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI pitch bend messages. Channel 

numbers greater than 16 received in the right inlet will be wrapped around to stay 
within the 1-16 range. If there is no argument, bendout initially transmits out port 
a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to transmit pitch bend messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
(MIDI) There are no outlets. The output is a MIDI pitch bend message transmitted 

directly to the object’s MIDI output port.
49 



bendout  Transmit MIDI
pitch bend messages
Examples

See Also

bendin Output received MIDI pitch bend messages
midiout Transmit raw MIDI data
xbendout Prepare extra precision MIDI pitch bend messages
xbendin Interpret extra precision MIDI pitch bend messages
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Letter argument transmits
 to only one port

Otherwise, number specifies 
both port and channel
 50



bondo Synchronize a
group of messages

51 

Input
any message In any inlet: The input is stored in the location corresponding to that inlet, and 

causes anything previously stored to be sent out its corresponding outlet. If no 
message has yet been received in a particular inlet, 0 is sent out of the correspond-
ing outlet.

bang In any inlet: Sends out all stored messages immediately.

set In any inlet: The word set, followed by any message, stores the input in the loca-
tion corresponding to that inlet without triggering any output.

Arguments
int Optional. The first argument specifies the number of inlets and outlets. The 

default number of inlets and outlets is 2. The second argument specifies a number 
of milliseconds to delay when a message is received before sending messages out 
the outlets.

Output
any message Anything stored in an inlet is sent out the corresponding outlet numbers. Output 

is immediate if triggered by a bang. If output is triggered by a message, and a sec-
ond argument has been typed in, output will be delayed by the number of milli-
seconds specified in the second argument.

Examples

bondo can synchronize messages arriving from different sources

See Also

buddy Synchronize arriving data, output them together 
onebang Traffic control for bang messages
pack Combine numbers and symbols into a list
thresh Combine numbers into a list, when received close together



Borax  Report current information
about note-ons and note-offs
Input
int In left inlet: The number is the pitch value of a MIDI note-on message or note-off 

message (note-on with a velocity of 0). The pitch is paired with the velocity in the 
middle inlet. Borax ignores note-on messages for pitches it is already holding, and 
ignores note-off messages for pitches that have already been turned off. If the note 
is not a duplicate, Borax sends out the pitch and velocity values, as well as other 
information. 

In middle inlet: The number is stored as the velocity, to be paired with pitch num-
bers received in the left inlet.

float In middle inlet: Converted to int.

list In left inlet: The second number is stored as the velocity, and the first number is 
used as the pitch, of a pitch-velocity pair. If the note is not a duplicate, Borax sends 
out the pitch and velocity values, as well as other information.

delta In left inlet: Causes the delta time (the time elapsed since the last note-on) and the 
delta count (the number of delta times that have been reported) to be sent out.

bang In right inlet: Resets Borax by sending note-offs for all notes currently being held, 
erasing the Borax object’s memory of all notes received, and setting its counters 
and its clock to 0.

Arguments
None.

Output
int Out left outlet: Each note-on received by Borax is assigned a unique number, 

equal to the total count of note-ons received (since the last reset). That number is 
sent out when the note-on is received, and the same number is sent out when the 
note is turned off.

Out 2nd outlet: Each note is also assigned a unique voice number, equal to the 
lowest available number. (A voice becomes available when the note assigned to it 
is turned off.) That number is sent out when the note-on is received, and the same 
number is sent out when the note is turned off.

Out 3rd outlet: The number of notes being held by Borax is sent out each time a 
note-on or a note-off is received.

Out 4th outlet: The pitch of the note-on or note-off is sent out.

Out 5th outlet: The velocity of the note-on or note-off is sent out.
 52



Borax Report current information
about note-ons and note-offs
Out 6th outlet: When a note-off is received, the total count of all completed notes 
(since the last reset) is sent out.

Out 7th outlet: When a note-off is received, the duration of that note, in millisec-
onds, is sent out.

Out 8th outlet: Each time a delta time is reported, the total count of delta times is 
sent out.

Out right outlet: When a note-on is received, the delta time is sent out (the time 
elapsed since the previous note-on, in milliseconds). A delta message in the left 
inlet causes the same output.

A bang received in the right inlet causes Borax to provide note-offs for any notes it 
currently holds. These note-offs trigger the same outputs as if they had actually 
been received.

Examples

Borax provides extensive information about the notes passing through

See Also

midiparse Interpret raw MIDI data
poly Allocate notes to different voices
53 



bpatcher Embed a visible
subpatch inside a box
Input
anything The number of inlets in a bpatcher object is determined by the number of inlet 

objects contained in its subpatch window. If the patch being used in a bpatcher 
contains inlet objects, they will appear in left-to-right correspondence as inlets in 
the bpatcher object’s box.

offset If the subpatch being used in the bpatcher contains a thispatcher object connected 
to one of its inlet objects, the view of the subpatch can be changed by an offset 
message received in the corresponding inlet of bpatcher. The word offset must be 
followed by two ints, specifying the number of pixels by which the upper left cor-
ner of the subpatch is to be offset horizontally and vertically within the bpatcher. 
In this way, a single bpatcher can be used to give different views of the subpatch. 
User interface objects in the subpatch that are partially outside the bpatcher 
object’s box will redraw completely (even outside the bounds of the bpatcher) in 
response to messages received in their inlet. It is therefore advised that user inter-
face objects in the subpatch be either completely inside or completely outside the 
bpatcher object’s box.

border If the subpatch being used in the bpatcher contains a thispatcher object connected 
to one of its inlet objects, the word border with any non-zero number in that inlet 
causes a black border to be drawn around the bpatcher. The message border 0 erases 
the border of the bpatcher (the default appearance).

(mouse) When the window containing the bpatcher is locked (or the Command key is held 
down) and the mouse is clicked inside the bpatcher object’s box, the gesture is 
handled by the patch inside the box. 

If the Shift and Command keys are held down while clicking on a bpatcher, drag-
ging the mouse moves the upper-left corner of the visible part of the patch inside 
the box. The Assistance area of the patcher window shows the pixel values of the 
offset. If Enable Drag-Scrolling is unchecked in the bpatcher Inspector window, 
this feature is disabled.

If the Command and Option keys are held down while clicking in a bpatcher, a 
pop-up menu allows you to open the original file of the patch contained inside 
the box in its own window, or change the patch currently contained inside the box 
in its own window.

Inspector
The behavior of a bpatcher object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any bpatcher object displays the 
bpatcher Inspector in the floating window. Selecting an object and choosing Get 
Info… from the Object menu or also displays the Inspector.
54



bpatcher Embed a visible
subpatch inside a box
The bpatcher Inspector lets you set the following attributes:

Offset specifies the number of pixels by which the left upper corner of the picture 
is to be offset horizontally and vertically from the left upper corner of the fpic box. 
By default the left upper corner of the picture is located at the left upper corner of 
fpic (that is, with an offset of 0,0). This offset can be changed by entering new 
pixel values into the number boxes. The default is no offset (i.e. 0 horizontal, 0 
vertical).

Use the Offset number boxes to specify the number of pixels by which the upper 
left corner of the subpatch is to be offset horizontally and vertically within the 
bpatcher object’s display area. The default values are 0 for both horizontal and ver-
tical offsets.

Checking the Border checkbox causes a black border to be drawn around the 
bpatcher. The default appearance is unchecked (no border).

The Embed Patcher in Parent checkbox allows you to embed the subpatch and save 
it as part of the main patch (just as with a patcher object) instead of the subpatch 
being saved in a separate file. The default is unchecked (the subpatch is saved as a 
separate file).

Checking the Enable Drag-Scrolling checkbox allows you move the upper-left cor-
ner of the visible part of the patch inside the box by holding down the Shift and 
Command keys while clicking on a bpatcher, and dragging the mouse. The 
default value is unchecked (drag-scrolling is disabled).

The Patcher File option lets you choose a patcher file for the bpatcher to use by 
clicking on the Open button. The current file’s name appears in the text box to the 
left of the button. You can also choose a file by typing its name in this box, or by 
dragging a file icon from the Finder into this box.

The Arguments to Patcher lets you input arguments to your patcher which will be 
saved along with the main patch.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.
55



bpatcher Embed a visible
subpatch inside a box
Output
If the patcher being used in a bpatcher contains outlet objects, they will appear in 
corresponding left-to-right order as outlets in the bpatcher object’s box.

Examples

See Also

patcher Create a subpatch within a patch
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 27 Your object
Tutorial 28 Your argument
Encapsulation How much should a patch do?

View the contents
of a subpatcher

The contents of this patch
can be windowed...

...using offset messages to a
small bpatcher containing it
56



Bucket Pass a number from outlet to
outlet, out each one in turn
Input
int The numbers currently stored in Bucket are sent out, then each number is moved 

one outlet to the right and the new number is stored to be sent out the left outlet 
the next time a number is received. 

float Converted to int.

list Only the first number in the list is used.

bang All stored values are sent out, but their position is not shifted.

freeze Suspends the Bucket output, but new incoming numbers continue to shift the 
stored values internally.

thaw Resumes Bucket output.

roll The word roll, followed by any number, causes Bucket to use the value stored in its 
rightmost outlet as input; thus, it sends its output, shifts all stored values to the 
right, then stores the value which had been in the rightmost outlet in the leftmost 
outlet (as if it had been received in the inlet).

L2R Sets Bucket to shift its stored values from left to right (the default) whenever it 
receives a number in its inlet.

R2L Sets Bucket to shift its stored values from right to left whenever it receives a num-
ber in its inlet, placing the incoming number in the rightmost outlet.

set The word set, followed by a number, sends that number out each outlet, and stores 
the number as the next value to be sent out each of its outlets.

l2r Same as L2R.

r2l Same as R2L.

Arguments
int Optional. Sets the number of outlets. If there is no argument, there will be one 

outlet.

Output
int When a number is received, it is not sent out immediately, but the numbers stored 

in Bucket are sent out. The numbers are all moved one outlet to the right, and the 
newly received number is stored in the left position.
57 



Bucket  Pass a number from outlet to
outlet, out each one in turn
Examples

Numbers are passed from one outlet to another

See Also

cycle Send a stream of data to individual outlets
Decode Send 1 or 0 out a specific outlet
gate Pass the input out a specific outlet
spray Distribute an integer to a numbered outlet
 58



buddy Synchronize arriving data,
output them together

59 

Input
any message In any inlet: When data has been received in all its inlets, buddy sends the received 

messages out their corresponding outlets, then waits until data has arrived again 
in all inlets.

clear In left inlet: Deletes all values stored in the inlets.

bang In any inlet: Same as the number 0.

Arguments
int Optional. Sets the number of inlets (and outlets). If there is no argument, there 

are two inlets and two outlets.

Output
any message When a data has arrived in each inlet, it is sent out the outlets, in order from right 

to left.

Examples

Output is synchronous, even if input is not synchronous

See Also

bondo Synchronize a group of messages 
onebang Traffic control for bang messages
pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages



60

button Flash on any message,
send a bang

Input
color The word color, followed by a number from 0 to 15, sets the color of the center cir-

cle of the button to one of the object colors which are also available via the Color 
command in the Object menu. When button sends a bang, it always flashes with 
the color yellow.

any message When any message is received in the inlet, button flashes briefly and bang is sent 
out the outlet. A mouse click on the button has the same effect.

Arguments
None.

Output
bang A mouse click or any message in the inlet causes button to flash and send out bang.

Examples

See Also

bangbang Send a bang to many places, in order
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
trigger Send input to many places, in order
ubutton Transparent button, sends a bang
Tutorial 2 bang means “Do it!”

Triggers other messages and processes Converts other messages to bang



capture Store numbers
to view or edit
Input
int Numbers are stored in the order in which they are received. 

list All ints in the list are stored in order from first to last. Floats and symbols are 
ignored.

clear Erases the contents of a capture object.

count Prints the number of items collected in the capture in the Max window.

dump Outputs the contents of the capture object, one number at a time, out the outlet.

open Causes the window associated with the capture object to become visible. The win-
dow is also brought to the front. Double-clicking on the capture object in a locked 
patcher has the same effect.

wclose Closes the window associated with the capture object.

write The word write, followed by a symbol, saves the contents of the capture object into 
a text file, using the symbol as the filename. The file will be saved in the same 
folder as the Max application, unless the symbol is a complete pathname specify-
ing some other folder (such as write ‘MyDisk:Documents:Captured Data:outputfile’). The 
word write by itself causes a standard Save As dialog box to be opened, allowing 
you to name the file and save it in the desired folder.

Arguments
int Optional. The first argument sets a maximum number of ints to store. If there is 

no argument, capture will store up to 512 numbers. Once the maximum has been 
exceeded, the earliest stored number is dropped as each new number is received.

x or m Optional. If the second argument is x, all numbers will be displayed in hexadeci-
mal form in the editing window. If the second argument is m, numbers less than 
128 are displayed in decimal, and numbers greater than 128 are in hexadecimal. If 
there is no argument, all numbers are displayed in decimal.

Output
int The captured contents are sent out the outlet, one number at a time, in response 

to the dump message.

Double-clicking on capture (when the patcher window is locked) opens an edit-
ing window in which the stored numbers can be viewed and edited. Editing the 
window does not actually alter the contents of capture, but is useful for cutting 
and pasting values into a table or a separate file. (Although capture can continue 
to store numbers while the editing window is open, the editing window is not 
updated. It must be closed and reopened to view the newly stored numbers.)
61 



capture  Store numbers
to view or edit
Examples

See Also

Text Format numbers as a text file
Debugging Techniques for debugging patches
Tutorial 34 Managing raw MIDI data

Collect numbers to paste into a table… …or just to see what’s been going on
 62



cartopol Cartesian to Polar
coordinate conversion

63 

Input
float In left inlet: The real part of a frequency domain value to be converted into a polar 

coordinate pair consisting of amplitude and phase values.

In right inlet: The imaginary part of a frequency domain value to be converted 
into a polar coordinate pair consisting of amplitude and phase values.

Arguments
None.

Output
float Out left outlet: The magnitude (amplitude) of the frequency represented by the 

currently input.

Out right outlet: The phase, expressed in radians, of the frequency represented by 
the current input. If only the left outlet is connected, the phase computation is not 
performed.

Examples

Convert Polar to Cartesian coordinates

See Also

atan2 Arc-tangent function (two variables)
lcd Draw graphics in a patcher window
poltocar Polar to Cartesian coordinate conversion
pow Compute x to the power of y



cd  Control playback
of audio CDs
Input
int 0 pauses the CD drive, stopping the sound immediately. A number between 1 and 

the number of tracks begins playing the CD at the beginning of the numbered 
track.

float Begins playing from a specified number of seconds, expressed in floating point. 
The value is converted into the equivalent number of minutes, seconds, and 
blocks by the cd object.

list A list of three numbers specifies an absolute minute, second, and block (1/75th of 
a second). The CD drive seeks to the specified location and begins playing.

bang Reports the current location of the CD out the three leftmost outlets of the cd 
object.

drive Followed by a number, drive switches the playing disc drive to the numbered drive 
in a multi-disc CD changer. Drive numbers start at 1.

eject Ejects the currently mounted CD. eject is the same as dragging a CD icon into the 
trash in the Finder.

endstop Clears any stop point set with the stop message.

ff Begins a “fast” forward play of the CD. With no arguments, ff begins forward-
playing from the current location. With one number, ff begins from the start of a 
track. With a list of three numbers, ff begins from a minute/second/block point.

fstop Set a stop point at a specified number of seconds, expressed in floating point. The 
value is converted into the equivalent number of minutes, seconds, and blocks by 
the cd object.

init Print the table of contents for a CD in the Max window.

pause Pauses the CD drive. Same as 0.

resume Resumes play from the current location if the drive is paused.

rewind Begins a “fast” reverse play of the CD. With no arguments, rewind begins reverse-
playing from the current location. With one number, rewind begins from the start 
of a track. With a list of three numbers, rewind begins from a minute/second/block 
point.

search The word search, followed by a list of three numbers, specifies an absolute minute, 
second, and block. The CD drive seeks to the location but does not begin playing. 
Send the list of three numbers (without the word search) to begin playing at this 
location. Using search seems to make only a slight improvement in the time it takes 
to get the CD to respond after sending it a command.
 64



cd Control playback
of audio CDs
select The word select, followed by a number or the words “first” through “sixth”, select 
which CD drive is to be used. When CD drives are specified by number (e.g., 
select 1), the first argument is the device ID of the drive. If you have only one CD 
drive, you can type in any number from 0 to 7 for the ID and cd will be able to find 
the drive. 0 specifies an ATAPI drive and 1-7 specifies a SCSI drive. An optional 
second argument can be used to specify the buffer size, in samples, used for the 
selected drive.

stop With no arguments, stop pauses the CD drive. Followed by a list of three numbers, 
stop sets an automatic stop point at a specified minute, second, and block. When 
the CD reaches this location, it will automatically stop. Note that until you clear 
the stop point with endstop, the drive will never play past the set stop point, even if 
you restart the computer.

toc Send a CD’s table of contents as a series of lists out the cd object’s right outlet. The 
list is designed to feed directly into a coll object. The first number in each list is the 
track number, followed by the minute, second, and block at which the track 
starts. The last list in the series is the minute, second, and block where the last 
track ends. You can use the toc message to create a patch that displays the current 
track number based on the location of the CD.

trackdurs Send the durations of the tracks on a CD out the cd object’s right outlet. The out-
put consists of a number which specifies the track number, and a float which 
specifies the duration, in seconds, of the track.

volume The word volume, followed by a number between 0 and 255, sets the volume for 
both the left and right audio channels, where 0 is muted and 255 is full volume. 
When volume is followed by two numbers in this range, the first number specifies 
the volume for the left channel and the second number specifies the volume for 
the right channel.

Arguments
int The cd object takes two arguments, both are optional (although to specify the sec-

ond argument, you must type both arguments). The first argument is the device 
ID of the drive. If you have only one CD drive, you can type in any number from 0 
to 7 for the ID and cd will be able to find the drive. 0 specifies an ATAPI drive and 
1-7 specifies a SCSI drive. The second argument specifies how often the cd object 
will report the time location of the drive when it is playing. A second argument of 
0 means that the cd object will never report where the CD drive is playing unless 
you send it a bang message.

Output
When the cd object is created, it prints the current CD’s table of contents (the 
minute, second, and block locations of the start of each track) in the Max win-
65 



cd  Control playback
of audio CDs
dow. You can use this information as a guide when you specify CD locations in 
minute/second/block format.

Also, as noted above, if the second argument to the cd object is 0 (the default), no 
time location output is generated. Otherwise, the numbers are sent out at an 
interval specified by the second argument.

int Out left outlet: The absolute minute (starting at 1) of the CD drive when it is play-
ing.

Out middle-left outlet: The absolute second (starting at 0) of the CD drive when it 
is playing.

Out middle-right outlet: The absolute block number (starting at 0) of the CD 
drive when it is playing. A second of sound on a CD is divided into 75 blocks. 
Each block represents a 75th of a second, or 13 and 1/3 milliseconds.

list Out right outlet: A series of lists is output in response to the toc message. Each list 
has a track number followed by the minute, second, and the starting block num-
ber of the track.

Examples

See Also

appledvd Control Apple DVD Player application
past Report when input increases beyond a certain number
vdp Control a videodisc player through the serial port

Incoming notes play track 1 Play for 8 seconds and 63 
blocks before turning off

Display the current time 
location of the CD drive
 66



change Filter out repetitions
of a number
Input
int or float The number is sent out the outlet only if it is different from the currently stored 

value. Replaces the stored value.

set The word set, followed by a number, replaces the stored value without triggering 
output.

mode The word mode, followed by a +, causes change to send a 1 out its left outlet if the 
received number is greater than the previously received number. In this mode, 
change does nothing with any other input. The word mode, followed by a -, causes 
change to send out a -1 if the received number is less than the previously received 
number. In this mode, change does nothing with any other input. The word mode 
by itself returns change to its default mode of sending out received values that dif-
fer from the previously received input.

Arguments
int or float Optional. Initial value for comparison to incoming numbers. If there is no argu-

ment, the initial value is 0.

symbol Optional. A second argument may be + or -, causing change to behave as if it had 
received a mode + or mode - message. Subsequent mode messages can change this 
behavior.

Output
int Out left outlet: The number received in the inlet is sent out only if it is different 

from the stored value.

Out middle outlet: If the stored value is 0 and the input is not 0, 1 is sent out; oth-
erwise nothing is sent out.

Out right outlet: If the stored value is not 0 and the input is 0, 1 is sent out; other-
wise nothing is sent out.

Examples

Filter out undesirable repetitions
67 



change  Filter out repetitions
of a number
See Also

Peak If a number is greater than previous numbers, output it
TogEdge Report a change in zero/non-zero values
Trough If a number is less than previous numbers, output it
!= Compare two numbers, output 1 if they are not equal
Tutorial 15 Making decisions with comparisons
 68



clip Limit numbers
within a certain range
Input
int or float In left inlet: The number is sent out the outlet, constrained within the minimum 

and maximum limits specified by the arguments, inlets, or by a set message. If the 
number received is a float, it will be sent out as a float.

In middle inlet: Minimum limit for the range of the output.

In right inlet: Maximum limit for the range of the output.

list Each number in the list is constrained within the minimum and maximum limits, 
and the constrained numbers are sent out as a list.

set The word set, followed by two numbers, resets the minimum and maximum lim-
its within which all numbers will be constrained before being sent out the outlet.

Arguments
int or float Optional: The first number specifies a minimum limit and the second number 

specifies a maximum limit, within which all numbers will be constrained before 
being sent out the outlet. If only one argument is present, it is used as both the 
minimum and maximum limit. If no argument is present, the minimum and 
maximum limit is 0.

Output
int When an int is received in the inlet, it is constrained within the specified mini-

mum and maximum limits, then sent out the outlet. If the received number is less 
than the minimum limit, the minimum value is sent out; if the received number is 
greater than the maximum limit, the maximum value is sent out.

float If the received number is a float, it is constrained within the specified minimum 
and maximum limits, then sent out the outlet as a float. 

list When a list is received in the inlet, each number is constrained within the specified 
minimum and maximum limits, and the numbers are sent out as a list.

Examples

Numbers are always kept within the specified range
69 



clip  Limit numbers
within a certain range
See Also

maximum Output the greatest in a list of numbers
minimum Output the smallest in a list of numbers
split Look for a range of numbers
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
 70



clocker Report elapsed time,
at regular intervals
Input
int or float In left inlet: Any non-zero number starts clocker. The time elapsed since clocker 

was started is sent out the outlet at regular intervals. 0 stops clocker. If clocker is 
already running when it receives a non-zero number, it continues reporting the 
elapsed time at regular intervals from that new point, but without resetting the 
clock time to 0.

In right inlet: The number is the time interval, in milliseconds, at which clocker 
will report the elapsed time. A new number in the right inlet does not take effect 
until the next time output is sent.

bang In left inlet: Starts clocker.

stop In left inlet: Stops clocker.

clock The word clock, followed by the name of an existing setclock object, sets the clocker 
to be controlled by that setclock rather than by Max’s internal millisecond clock. 
The word clock by itself sets clocker back to using Max’s regular millisecond clock.

reset In left inlet: Resets the elapsed time to 0 without stopping or restarting the clock; 
clocker continues to report the new elapsed time at the same regular interval. This 
message is meaningless when the clocker is not running, since it always resets to 0 
anyway when stopped.

Arguments
int If the second argument is 1, clocker is controlled by OMS Timing (or the MIDI 

Manager if OMS is not installed), which is useful for synchronizing Max with 
other OMS-compatible applications. If the second argument is 0 or not present, 
clocker uses Max’s internal millisecond clock.

Output
int The time elapsed, in milliseconds, since clocker was started. The first output is 

always 0, sent immediately each time clocker is started.
71 



clocker  Report elapsed time,
at regular intervals
Examples

See Also

metro Output a bang message at regular intervals
setclock Control the clock speed of timing objects remotely
tempo Output numbers at a metronomic tempo
timer Report elapsed time between two events
Tutorial 31 Using timers

Get the elapsed time Generate numbers as a function of time
 72



closebang Send a bang when patcher
window is closed

73 

Input
There are no inlets. Output occurs when the patcher window is closed.

Arguments
None.

Output
bang Sent automatically when the patcher window is closed.

Examples

See Also

active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
loadbang Send a bang automatically when patch is loaded
Tutorial 40 Automatic actions

Stop a process when window
 is about to be closed

…or turn off held notes
and sustain pedal



coll  Store and edit a collection
of different messages
Input
list The first number is used as the address (the storage location within coll) at which 

to store the remaining items in the list (coll can store a list of up to 250 items). The 
address will always be stored as an int.

int The number refers to the address of a message stored in coll. If a message is stored 
at that address, the stored message is sent out the 1st outlet.

float Converted to int when received alone as an address. Left alone when part of a 
stored message.

bang Same effect as the next message.

(Get Info…) A coll object can be set to save its contents as part of the patch that contains it. 
When the patcher window is unlocked, select the coll object, choose Get Info… 
from the Object menu, and check Save coll with patcher.

assoc The word assoc, followed by a symbol and a number, associates the symbol with 
the address specified by the number, provided that the number address already 
exists. From then on, any reference to that symbol will be interpreted by coll as a 
reference to the number address. Each number address can have only one symbol 
associated with it, except 0, which cannot have an associated symbol. (Note: If the 
symbol was already being used as an address, or was already associated with a 
number address, the message that was stored at that address is removed.)

clear Erases everything from the collection.

deassoc The word deassoc, followed by a symbol and a number, removes the association 
between the symbol and the number address. The symbol no longer has any 
meaning to coll.

delete Functions similarly to the word remove, except that if the specified address is a 
number, all addresses of a greater number are decremented by 1.

dump Sends all of the stored addresses out the 2nd outlet and all of the stored messages 
out the 1st outlet, in the order in which they are stored. A bang is sent out the 4th 
outlet when the dump is completed.

end Sets the pointer (used by the goto, next, and prev messages) to the last address in the 
coll.

filetype The word filetype, followed by a symbol, sets the file types which can be read and 
written into the coll object. File types are specified are specified using the stan-
dard four-character combination (e.g. filetype ffoo). The message filetype with no 
arguments restores the default file behavior—either Max binary or text file for-
mats.
 74



coll Store and edit a collection
of different messages
flags Normally, the contents of coll are not saved as part of the patch when the patcher 
window is closed. The message flags 1 0 sets the coll object to save its contents as 
part of the patcher that contains it. The message flags 0 0 causes the contents of the 
coll not to be saved with the patcher that contains it.

goto The word goto, followed by a number or a symbol, sets a pointer at the address 
specified by the number or symbol. If no such address exists, the pointer is set at 
the beginning of the collection. The pointer is set at the beginning of the collec-
tion initially, by default.

insert The word insert, followed by a number and a message, inserts the message at the 
address specified by the number, incrementing all equal or greater addresses by 1 
if necessary.

length Counts the number of messages contained in coll and sends the number out the 
1st outlet. This message works well in conjunction with the grab object.

max Determines the maximum single numerical value (i.e. not a list or symbol) stored 
in the coll and sends the number out the 1st outlet. This message works well in 
conjunction with the grab object.

merge The word merge, followed by an address and a message, appends its message at the 
end of the message already stored at that address. If the address does not yet exist, 
it is created.

min Determines the minimum single numerical value (i.e. not a list or symbol) stored 
in the coll and sends the number out the 1st outlet. This works well in conjunction 
with the grab object.

next Sends the address pointed to by the pointer out the 3rd outlet, and sends the mes-
sage stored at that address out the 1st outlet, then sets the pointer to the next 
address. If the address is a symbol rather than a number, 0 is sent out the 3rd out-
let. If the pointer is currently at the last address in the collection, it wraps around to 
the first address. (Note: Number addresses are stored in ascending order. Symbol 
addresses are stored in the order in which they were added to the collection, after 
all of the number addresses.) If the message received immediately prior to next was 
prev, next sends out the value stored at the address one greater than the one that was 
just sent out.

nstore The word nstore, followed by a number and a symbol (or a symbol and a number), 
followed by any other message, stores the message at the specified number 
address in the coll, with the specified symbol associated. (This has the same effect 
as storing the message at an int address, then using the assoc message to associate a 
symbol with that number.)

nsub The word nsub, followed by an address, an item number, and another number or 
symbol, replaces one item stored at the address. (Example: nsub pgms 4 7 puts the 
75 



coll  Store and edit a collection
of different messages
number 7 in place of the 4th item of the message stored at the address pgms.) 
Number values and symbols can both be substituted in this manner.

nth The word nth, followed by an address and a number, gets the nth item (specified 
by the number) from the message at that address, and sends it out the 1st outlet. 
(Example: nth pgms 4 outputs the 4th item in the message stored at the address 
named pgms.)

open Causes a text edit window associated with the coll object to become visible. The 
window is also brought to the front.

prev Causes the same output as the word next, but the pointer is then decremented 
rather than incremented. If the pointer is currently at the first address in the col-
lection, it wraps around to the last address. If the message received immediately 
prior to prev was next, prev sends out the value stored at the address one less than 
the one that was just sent out.

read The word read with no arguments puts up a standard Open Document dialog box 
for choosing a file to load into coll. If read is followed by a symbol filename argu-
ment, the named file is located and loaded into coll.

readagain Loads in the contents of the most recently read file. If no prior read or readagain 
message has been received by the coll, readagain is treated as a read message, and an 
Open Document dialog box is displayed.

refer The word refer, followed by the name of another coll object, changes the coll receiv-
ing the message to refer to the data in the named coll object.

In addition to reading messages in from another file and storing messages via the 
inlet, one can also enter messages in coll by typing. Double-clicking with the 
mouse on the coll object displays the contents as text in an editing window which 
the user can modify.

In order to edit a collection by hand or read in from another file, it is essential to 
know the correct text format for the contents of a coll object. Each message is 
stored in the coll object on a separate line. The format of each line is as follows: the 
address (an int or a symbol), any symbols associated with that address (if the 
address is an int), a comma (to separate the address from the data it contains), the 
data (anything), and a semicolon to indicate the end of each line. In a line such as

3 reset, set 4.7; 

3 is the number of the address, reset is a symbol associated with that address, and 
the message it contains is set 4.7. 
 76



coll Store and edit a collection
of different messages
Here is how we would store the numbers 100, 200, 300, and 400 with the 
addresses 1, 2, 3, and 4.

1, 100;
2, 200;
3, 300;
4, 400;

remove The word remove, followed by a number or a symbol, removes that address and its 
contents from the collection.

renumber Makes the numbers associated with the data in the coll object consecutive and 
increasing. The argument to the renumber message specifies the starting number 
address for the data. Here’s a before and after example for coll sent the message 
renumber 1.

Before After
4, apple; 1, apple;
6, banana; 2, banana;
3, cherry; 3, cherry;
9, durian; 4, durian;

sort The sort message takes two arguments. If the first argument is -1, the items in the 
coll are sorted in ascending order. If the first argument is 1, the items in the coll are 
sorted in descending order.

The second argument specifies what is used to sort the contents of the coll. If the 
second argument is -1, the index (or symbol) associated with the data is used. If 
the second argument is not present or 0, the first item in the data is used. If the 
second argument is 1 or greater, the second (or greater) item in the data is used.

store The word store, followed by some symbol (usually a word), followed by a message, 
stores the message at an address named by the symbol. (Example: store triad 0 4 7 
will store the list 0 4 7 at an address named triad.)

sub Same as nsub, except that the message stored at the specified address is sent out 
after the item has been substituted.

swap The swap message takes two symbols or two numbers as addresses, and exchanges 
the data associated with each address. For example, if the coll contains

1, 400;
2, 700;

swap 1 2 would change the coll to

1, 700;
2, 400;
77 



coll  Store and edit a collection
of different messages
subsym Changes the symbol associated with data. The first argument to subsym is the new 
symbol to use, and the second argument is the symbol associator to replace. For 
instance, if the coll contains

jill, 40 50 60;

subsym jack jill will change the coll to

jack, 40 50 60;

symbol The symbol refers to the address of a message stored in coll. If a message is stored 
at the address named by the symbol, the message is sent out the 1st outlet. The 
symbol may, but need not necessarily, be preceded by the word symbol.

wclose Closes the window associated with the coll object.

write Calls up the standard Save As dialog box, enabling the user to save the contents of 
coll as a separate file. If the word write is followed by a symbol, the contents of the 
coll are saved immediately in a file, using the symbol as the filename.

writeagain Saves the contents of the coll into the most recently written file. If no prior write or 
writeagain message has been received by the coll, writeagain is treated as a write mes-
sage, and a Save As dialog box is opened.

Inspector
The behavior of a coll object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any coll object displays the coll Inspector in the 
floating window. Selecting an object and choosing Get Info… from the Object 
menu or also displays the Inspector.

Checking Save coll with patcher sets the coll object to save its contents as part of the 
patch that contains it.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
any symbol Optional. Name of a file to be read into coll automatically when the patch is 

loaded. The information in the file must be in the correct format in order to be 
read in by coll. All coll objects which share the same name always share the same 
contents. You can use the file name as an identifier for the purpose of sharing data 
 78



coll Store and edit a collection
of different messages
between multiple coll objects, without there needing to be an actual file with the 
specified name.

Output
anything Messages stored in coll are sent out the 1st outlet. If the message consists of only a 

single symbol, it will be preceded by the word symbol when it is sent out.

int Out 1st outlet: The number of messages contained in coll is sent out in response to 
the length message.

int or symbol Out 2nd outlet: The address is sent out whenever a message out the 1st outlet is 
triggered by bang, dump, next, prev, or sub.

bang Out 3rd outlet: Sent out when coll has finished loading in or writing a file of data.

Out 4th outlet: Sent out when coll has finished sending all of the stored addresses 
and messages in order out the 1st and 2nd outlets in response to a dump message.

Examples

Complex messages can be recalled with a single number or word
79 



coll  Store and edit a collection
of different messages
Results for successive next and prev messages

See Also

bag Store a collection of numbers
table Store and graphically edit an array of numbers
funbuff Store x,y pairs of numbers together
Tutorial 37 Data structures
Data Structures Ways of storing data in Max
 80



colorpicker Select a color
using a modal dialog
The colorpicker object uses a Mac OS Color Picker dialog that lets you choose colors in several dif-
ferent color spaces—red-green-blue (RGB), hue-saturation-value (HSV), web-safe colors, and 
the nostalgia-inducing crayon mode. 

Input
(mouse) Double-clicking the object opens the Color Picker dialog box. If the patcher is 

unlocked, hold down the command key while double-clicking to open the dialog.

bang Same as double-clicking the object.

list A list of three numbers between 0 and 255 specifies the RGB color components of 
the default color which initially appears in the Color Picker dialog box when it is 
opened.

setprompt The word setprompt, followed by a text string, sets the Color Picker dialog box text 
label. This change will take effect the next time the dialog box is opened.

Arguments
None.

Output
list After you open the Color Picker dialog box and make a selection, clicking on the 

OK button will send a list of the RGB equivalents of the color you selected out the 
outlet. If you click the Cancel button, no messages are sent.

Examples

Display a color, or retrieve selected RGB color values
81



colorpicker Select a color
using a modal dialog
See Also

panel Colored background area
swatch Color swatch for RGB color selection and display
82



comment Explanatory note or label
Input
anything The comment object has no inlets and receives no input. Text is typed directly into 

the comment box when the patcher window is in Edit mode. When the patcher 
window is locked, the outline of the comment box disappears, and only the text is 
shown. The appearance of a comment can be modified by changing the font and 
by resizing its box.

The font and size of a comment can be changed with the Font menu.

Inspector
The appearance of a comment object can be edited using its Inspector. If you have 
enabled the floating inspector by choosing Show Floating Inspector from the 
Windows menu, selecting any comment object displays the comment Inspector in 
the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The comment Inspector lets you set the following attributes:

You can set a comment to display text in languages such as Japanese or Chinese 
that use a two-byte character representation system by checking the Two-byte 
Compatible option (the default is unchecked).

The Color option lets you use a swatch color picker or RGB values used to display 
the comment text. The default text color is black (0 0 0).

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
A comment has no outlets, sends no output, and does not affect the functioning of 
the patch.
83



comment Explanatory note or label
Examples

See Also

ubutton Transparent button, sends a bang
Tutorial 5 toggle and comment

Elucidate Label Make functional (covered with a ubutton)
84



cos Cosine function

85 

Input
float Input to a cosine function.

bang In left inlet: Calculates the hyperbolic cosine of the number currently stored. If 
there is no argument, cos initially holds 0.

Arguments
None.

Output
float The cosine of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



 86

cosh  Hyperbolic cosine function

Input
float or int Input to a hyperbolic cosine function.

bang In left inlet: Calculates the hyperbolic cosine of the number currently stored. If 
there is no argument, cosh initially holds 0.

Arguments
float or int Optional. Sets the initial value for the hyperbolic cosine function.

Output
float or int The hyperbolic cosine of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



counter Count the bang messages received,
output the count
Input
bang In left inlet: Sends out the current count of the bang messages received in the left 

inlet.

In left-middle inlet: Changes the direction of the count.

In middle inlet: Resets the count to its specified minimum value, which will be 
sent out the next time a bang is received in the left inlet.

In right-middle inlet: Resets the count to its specified minimum value, and sends 
out that value immediately.

In right inlet: Resets the count to its specified maximum value, which will be sent 
out the next time a bang is received in the left inlet.

int In left inlet: Same effect as bang.

In left-middle inlet: Sets the direction of the count. 0 causes counter to count up, 1 
causes it to count down, and 2 causes it to count up and down.

In middle inlet: The number sets the counter to a new value, to be sent out the 
next time a bang is received in the left inlet. If the number is less than the current 
minimum value, the minimum will be reset to that number. If the number is 
greater than the current maximum value, the counter will be set to that number, 
but the maximum value actually remains the same and the minimum is set equal 
to the maximum.

In middle-right inlet: The number sets the counter to a new value and sends it out 
immediately. If the number is less than the current minimum value, the minimum 
will be reset to that number. If the number is greater than the current maximum 
value, the number is sent out, but the maximum value actually remains the same 
and the minimum is set equal to the maximum.

In right inlet: Resets the maximum value sent out by counter. If the number is less 
than the current minimum, the maximum is set to be 1 greater than the mini-
mum.

float In left inlet: Same effect as bang.

set In left inlet: The word set, followed by a number, sets the counter to that number, 
which will be sent out the next time a bang is received in the left inlet.

jam In left inlet: The word jam, followed by a number, sets the counter to that number 
and sends the number out immediately.

goto In left inlet: Same effect as set.
87 



counter  Count the bang messages received,
output the count
up In left inlet: Causes counter to count up.

down In left inlet: Causes counter to count down.

updown In left inlet: Causes counter to count upward until it reaches the specified maxi-
mum, then count down until it reaches the specified minimum, then up, then 
down, and so on.

inc In left inlet: Increments the counter (upward) and sends out the new value, 
regardless of the direction in which the object has been set to count ordinarily.

dec In left inlet: Decrements the counter (downward) and sends out the new value, 
regardless of the direction in which the object has been set to count ordinarily.

next In left inlet: Same as bang.

min In left inlet: The word min followed by a number, resets the minimum value of 
counter to that number. If the number is greater than the current maximum value, 
the minimum is set equal to the maximum.

max In left inlet: The word max followed by a number, resets the maximum value of 
counter to that number. If the number is less than the current minimum value, the 
maximum is set to be 1 greater than the minimum. 

carrybang In left inlet: Causes counter to send a bang out the right-middle outlet when the 
count is going upward and reaches its maximum limit, and causes counter to send 
a bang out the left-middle outlet when the count is going downward and reaches 
its minimum limit. (By default, counter sends out the number 1 in those situa-
tions, instead of bang.)

carryint In left inlet: Undoes the effect of a previously received carrybang message. Resets 
the counter to send the numbers 1 and 0 out the left-middle and right-middle 
outlets (instead of bang) to signal when the counter reaches and leaves its mini-
mum and maximum values.

Arguments
int Optional. If there is only one argument, it sets an initial maximum count value for 

counter. If there are two arguments, the first number sets an initial minimum 
value, and the second number sets an initial maximum value. If there are three 
arguments, the first number specifies the direction of the count, the second num-
ber is the minimum, and the third number is the maximum. If there are no argu-
ments, the direction is up, the minimum is 0, and there is no maximum. 
 88



counter Count the bang messages received,
output the count
Output
int Out left outlet: When bang, next, or a number is received in the left inlet, the cur-

rent count is sent out, within the minimum and maximum limits specified. If the 
direction of the count is both up and down, the count is folded back in the other 
direction when it reaches the specified limits. If the count is in only one direction, 
up or down, the count is wrapped around to the opposite extreme when it reaches 
its limit.

When the direction is up, or up and down, counter, begins counting from the 
specified minimum value. When the direction is down, counter begins from the 
maximum value.

Out left-middle outlet: When the count is moving downward and reaches the 
minimum limit, the number 1 is sent out. When the count leaves the minimum 
limit, 0 is sent out.

Out right-middle outlet: When the count is moving upward and reaches the max-
imum limit, the number 1 is sent out. When the count leaves the maximum limit, 
0 is sent out.

Out right outlet: An additional count is kept of the number of times counter 
reaches its maximum limit. Each time the maximum is reached, that count is sent 
out.

bang Out left-middle outlet: If a carrybang message has been received in the left inlet, 
then when the count is moving downward and reaches the minimum limit, a bang 
is sent out (instead of the number 1 which is sent out by default). When the count 
leaves the minimum limit, nothing is sent out.

Out right-middle outlet: If a carrybang message has been received in the left inlet, 
then when the count is moving upward and reaches the maximum limit, a bang is 
sent out (instead of the number 1 which is sent out by default). When the count 
leaves the maximum limit, nothing is sent out.

Examples

Keep track of how many events have occurred, or create a continuous loop
89 



counter  Count the bang messages received,
output the count
See Also

tempo Output numbers at a metronomic tempo
Tutorial 31 Using timers
Loops Using loops to perform repeated operations
 90



ctlin Output received
MIDI control values
Input
(MIDI) ctlin receives its input from a MIDI control change message received from a MIDI 

input device.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming control messages. The word port is 
optional and may be omitted.

set The word set, followed by a number from 0 to 127, specifies a single controller 
number to be paid attention to by ctlin. This message is appropriate only if a spe-
cific controller number was originally typed in as an argument; it is ignored by 
ctlin if no controller number argument was originally typed in.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

(mouse) Double-clicking on a ctlin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies a single port from which to receive incoming control mes-

sages. If there is no letter present as an argument, ctlin can receive from all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

int Following the (optional) port argument, the next argument is a single controller 
number to be recognized by ctlin. If there is no controller number, or if the argu-
ment is a negative number, ctlin recognizes all controller numbers. If a single con-
troller number is specified in the argument, the outlet which normally sends the 
controller number is unnecessary, and is not created.

Following the controller number argument is a single channel number on which 
to receive control messages. If the channel argument is not present, ctlin receives 
control messages on all channels. In order for this argument to be used, a control-
ler number argument must precede it. To specify a channel number without spec-
ifying a controller number, use -1 for the controller number.

If a single channel number is specified as an argument, the outlet which normally 
sends the channel number is unnecessary, and is not created. If a port has been 
specified with a letter argument, channel numbers greater than 16 will be wrapped 
around to stay within the 1-16 range. If no port argument is present, a channel 
number can be used in place of a letter and number combination. The exact 
91 



ctlin  Output received
MIDI control values
meaning of the channel number argument depends on the channel offset speci-
fied for each port in the MIDI Setup dialog.

Output
int Out left outlet: The number is the control value of an incoming MIDI control 

change message.

If a specific controller number is not specified as an argument, the controller 
number is sent out the 2nd outlet.

If a specific channel number is not included in the argument, the channel number 
is sent out an additional, right, outlet.

Examples

Control messages can be filtered in a variety of ways

See Also

bendin Output received MIDI pitch bend values
ctlout Transmit MIDI control messages
midiin Output received raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
xbendin Interpret extra precision MIDI pitch bend messages
MIDI MIDI software protocol
OMS Using Max with OMS
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs
 92



ctlout Transmit MIDI
control messages
Input
int In left inlet: The number is used as the control value, and ctlout transmits a MIDI 

control change message. Numbers are limited between 0 and 127.

In middle inlet: The number is stored as the controller number of the control 
change messages transmitted by ctlout. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to transmit 
the control messages.

float Converted to int.

list In left inlet: The first number is the control value, the second the controller num-
ber, and the third the channel number. ctlout transmits a MIDI control change 
message using these values.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or a MIDI output device name, 
specifies the port used to transmit MIDI control messages. The word port is 
optional and can be omitted.

(mouse) Double-clicking on a ctlout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI control messages. If there is no 

argument, ctlout initially transmits out port a, on channel 1. When a port is speci-
fied by a letter argument, channel numbers greater than 16 received in the right 
inlet will be wrapped around to stay within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int Following the (optional) port argument, the next argument is an initial value for 
the controller number to be used in control messages transmitted by ctlout. Con-
troller numbers are automatically limited between 0 and 127. If there is no con-
troller number specified, the initial controller number is 1.

Following the controller number argument is an initial value for the channel 
number on which to transmit control messages. If the channel argument is not 
present, ctlout initially transmits control messages on channel 1. In order for this 
argument to be used, a controller number argument must precede it.
93 



ctlout  Transmit MIDI
control messages
If a port has been specified with a letter argument, channel numbers greater than 
16 will be wrapped around to stay within the 1-16 range. If no port argument is 
present, the channel number specifies both the port and the channel. The exact 
meaning of the channel number argument depends on the channel offset speci-
fied for each port in the MIDI Setup dialog.

Output
(MIDI) There are no outlets. The output is a MIDI control message transmitted directly 

to the object’s MIDI output port.

Examples

See Also

bendout Transmit MIDI pitch bend messages
ctlin Output received MIDI control values
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages
xbendout Format extra precision MIDI pitch bend messages
MIDI MIDI overview and specification
OMS Using Max with OMS
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Letter argument transmits to only one port Otherwise, number specifies
both port and channel
 94



cycle Send a stream of data
to individual outlets
Input
anything The stream of ints, floats, or symbols to be directed to successive outlets.

set The word set, followed by a number, specifies an outlet to which the next input 
should be directed, if in cycle mode. Outlets are numbered beginning with 0; if an 
outlet number is specified that does not actually exist, the message is ignored. 
(This message has no effect when cycle is in event-sensitive mode, in which case 
each message is always sent out beginning at the leftmost outlet.)

thresh The word thresh, followed by a number, sets the output mode, in the same way as 
the second typed-in argument. If the number is non-zero, cycle will detect sepa-
rate “events” and restart at the leftmost outlet whenever a new event occurs. If the 
number is 0, each number received will be directed to the next outlet in the cycle.

Arguments
int Optional. The first argument determines the number of outlets. If there is no 

argument, there will be one outlet. The second argument sets the output mode. If 
it is non-zero, cycle detects separate “events” and restarts at the leftmost outlet 
when a new event occurs. Examples of separate events include messages with 
delays between them, and messages triggered by successive mouse clicks or MIDI 
events. A stream of items separated by commas in a message box is considered a 
single event. If this argument is not present or is 0, the values cycle through all the 
outlets, regardless of whether they are attached to separate events or not.

Output
anything Out any outlet: In cycle mode, each successive int, float, or symbol received, either 

separately or as part of a list, is directed to an outlet to the right of the previous 
number. When the cycle reaches the rightmost outlet, the next number is sent out 
the left outlet. 

In event-sensitive mode, any int, float, or symbol which is a new event restarts the 
output at the left outlet.

Examples

Using cycle to get ASCII relief
95 



cycle  Send a stream of data
to individual outlets
See Also

Bucket Pass a number from outlet to outlet, out each one in turn
counter Count the bang messages received, output the count
spell Convert input to ASCII codes
spray Distribute an integer to a numbered outlet
 96



date Report current
date and time

97 

Input
date Outputs the current date as a list (month/day/year) out the left outlet.

ticks Outputs the current value of Ticks (the number of 1/60ths of a second since sys-
tem startup) out the right outlet.

time Outputs the current time as a list (military hours/minutes/seconds) out the mid-
dle outlet.

Arguments
None.

Output
list Out left outlet: When the date message is received, date sends the current date as a 

list.

list Out middle outlet: When the time message is received, date sends the current time 
as a list.

int Out right outlet: When the ticks message is received, date sends the current value 
of Ticks.

Examples

For pieces which change slowly, date can be used as a clock to trigger events

See Also

clocker Report elapsed time, at regular intervals
timer Report elapsed time between two events

unpack 0 0 0

20 32 1

change change change

do something on 
the second

do something on 
the hour

do something on 
the minute

date

Ask what time it istime

metro 500

Start/Stop "clock"



decide  Choose randomly between
on and off (1 and 0)
Input
bang In left inlet: Causes a randomly chosen output of 1 or 0.

int In left inlet: Same as bang.

In right inlet: A given “seed” number causes a specific (reproducible) sequence of 
pseudo-random 0 and 1 outputs to occur. The number 0 uses the time elapsed 
since system startup (an unpredictable value) as the seed, ensuring an unpredict-
able sequence of 0 and 1 outputs.

Arguments
int Optional. Sets a “seed” value to cause a specific (reproducible) sequence of 

pseudo-random 0 and 1 outputs to occur. If there is no argument, the time 
elapsed since system startup (an unpredictable value) is used as the seed, ensuring 
an unpredictable sequence of 0 and 1 outputs.

Output
int A 1 or a 0, chosen at random. With certain seed values, the output may seem at 

first to follow a “non-random” pattern, but over the course of many iterations the 
sequence becomes unpredictable and the balance between 1 and 0 becomes even.

Examples

Simulate a coin toss; switch randomly between on and off

See Also

drunk Output random numbers in a moving range
random Generate a random number
toggle Switch between on and off (1 and 0)
urn Generate random numbers without duplicates
 98



decide Choose randomly between
on and off (1 and 0)
99 



Decode  Send 1 or 0 out
a specific outlet
Decode acts as a hierarchical switchboard. The right inlet is the master switch, which can turn off 
(send 0 out) all outlets. The middle inlet is a submaster switch, which can turn on (send 1 out) all 
outlets, provided they have not all been turned off by the master switch. The left inlet can turn on 
one of the outlets exclusively, provided neither the submaster switch nor the master switch is 
active.

Input
int In left inlet: The number specifies an outlet out to turn on, turning off all other 

outlets. (Whenever an outlet is turned on that was previously turned off, a 1 is 
sent out. Conversely, whenever an enabled outlet is disabled, a 0 is sent out.) The 
outlets are referred to by number, beginning with 0 on the left, and numbers 
received in the left inlet are automatically limited between 0 and the number of 
outlets minus 1.

In middle inlet: Any number other than 0 enables all disabled outlets (sends a 1 
out them), unless all outlets are disabled. When 0 is received, Decode turns off all 
outlets except the one that had previously been on.

In right inlet: Any number other than 0 disables all enabled outlets (sends a 0 out 
them). Once all outlets have been disabled in this manner, no outlet can be 
enabled until a 0 is received in the right inlet. When a 0 is received, Decode re-
enables all outlets that it had just disabled.

float Converted to int.

Arguments
int Optional. Sets the number of outlets. The default is one outlet. 

float Converted to int.

Output
int When an outlet is enabled that was previously disabled, a 1 is sent out that outlet. 

When an outlet is disabled that was previously enabled, a 0 is sent out that outlet. 
The left outlet is initially enabled.
 100



Decode Send 1 or 0 out
a specific outlet
Examples

Decode is a hierarchical on/off switch 

See Also

Bucket Pass a number from outlet to outlet, out each one in turn
gate Pass the input out a specific outlet
toggle Switch between on and off (1 and 0)
101 



 102

defer  De-prioritize
a message

Input
anything If the message received in the inlet was triggered by a MIDI object (such as notein) 

or a timing object (such as metro or seq), and the Overdrive option is on, Max 
normally gives the message priority over activities that are not so critical in their 
timing (such as printing in the Max window). The defer object removes that spe-
cial priority from a message, allowing it to be superseded by messages for which 
precise timing is more critical. This is useful for de-prioritizing time-consuming 
messages which may interfere with musical rhythm, or for messages to objects 
that may not function well with Overdrive on.

Arguments
None.

Output
anything Same as the input. 

Examples

Overdrive’s priority given to MIDI or timing messages can be overridden with defer

See Also

Uzi Send a specific number of bang messages



delay / del Delay a bang
before passing it on

103 

Input
bang In left inlet: A bang is delayed a certain number of milliseconds before being sent 

out the outlet.

stop In left inlet: Stops delay from outputting the bang it is currently delaying.

int or float In left inlet: Sets the number of milliseconds to delay a bang, then triggers the bang 
to be delayed.

int or float In right inlet: The number is stored as the number of milliseconds to delay a bang 
received in the left inlet. A number received in the right inlet changes the delay 
time of the next bang received—it does not modify the time of a bang currently 
being delayed.

Arguments
int or float Sets an initial value for the number of milliseconds to delay a bang received in the 

left inlet. If there is no argument, the initial value is 0.

Output
bang A bang received in the left inlet is delayed by the number of milliseconds specified 

by the right inlet, then is sent out the outlet. Only one bang at a time can be delayed 
by delay. If a bang is already in delay when a new bang is received in the left inlet, the 
first bang is forgotten.

Examples

See Also

pipe Delay numbers or lists
Tutorial 22 Delay lines

Bang is delayed for a certain time Can be used to send triggers at specific times



detonate  Graphic score of
note events
Input
record In left inlet: Begins recording numbers coming in the inlets, treating them as 

parameters of note events to be recorded in a graphic score. The onset of an event 
is recorded each time a number is received in the left inlet.

int After a record message has been received, all numbers received are treated as 
parameters of a note event.

In left inlet: The delta time (delay), in milliseconds, since the previous recorded 
event. This denotes the “inter-onset interval —the time between the beginnings 
of notes—which effectively determines the rhythm in which the events are 
recorded. This need not necessarily be the true time in which they occur; deto-
nate believes any (non-negative) delta time it receives.

In 2nd inlet: The number is treated as the key number (pitch) of the note. If no 
key number has ever been received, 60 is used by default.

In 3rd inlet: The velocity of the note. If the velocity is 0—indicating a note-off—
the event will be treated as the end of an earlier note-on the same key, and will 
determine the duration of that earlier note. If no velocity number has ever been 
received, it is 64 by default.

In 4th inlet: In lieu of a note-off message, a note duration can be supplied as part 
of the note-on event. If no duration value has ever been received, and no note-off 
event is received to end the note, a duration of 10 milliseconds is used by default.

In 5th inlet: The number of a track on which to record the note event. Overdub 
recording is not possible with detonate, but each recorded note can be tagged 
with a track number for storing separate tracks of notes internally. If no track 
number has ever been received, notes are recorded on track 1.

In 6th inlet: The MIDI channel of the note. If no channel has ever been specified, 
notes are recorded on channel 1.

In 7th inlet: An “extra” number, which can be used for any purpose, attached to 
the note event. This number can be used to provide an additional event parame-
ter, or to serve as a control value in sync with the note. If no number has ever been 
received in this inlet, it is recorded as 0 by default.

In right inlet: A second “extra” number.

When detonate receives a number in the left inlet while recording, it treats the 
number as the inter-onset interval (the time elapsed since the previous event), 
combines it with the numbers most recently received in the other inlets, and 
records them together as a note event. As with most Max objects, the numbers 
received in the other inlets are stored for use in subsequent note events triggered 
by the receipt of a number in the leftmost inlet.
 104



detonate Graphic score of
note events
When detonate has received a follow message (see below), a subsequent number in 
the 2nd inlet is treated as the key number (pitch) of a note. If the number is the 
same as the pitch of the current note in the score (or a nearby note), the informa-
tion recorded for that note—except for the delta time—is sent out.

When detonate is neither recording nor following, a number in the left inlet has 
the same effect as the nth message (see below).

float Converted to int.

list The first number in the list is used as the delta time, and the other numbers are 
treated as if they had been received in the other inlets, respectively from left to 
right.

start Begins playing back the score, by simply sending out the first delta time. Once 
playback of the score has been started, next messages can be used to send out the 
next event information.

next Once playback of the score has been started with a start message, next sends out the 
event information (except the delta time) for the current note in the score, then 
sends out the delta time for the next note. That delta time can in turn be used as a 
delay time before sending another next message to detonate. When next is received 
on the last note of the score, there is no note following that one, so a unique value 
of -1 is sent out the left outlet to signal the end of the score. If a next message is 
received while the score is not being played back, detonate simply prints the mes-
sage not playing in the Max window.

nth The word nth, followed by a number, sends out the note information of the event 
in the score indicated by the number. (Events are numbered beginning with 0.) In 
place of the delta time for the event, the (cumulative) starting time of the event is 
sent out the left outlet.

clear Erases the contents of detonate.

follow Causes detonate to behave like a score reader, comparing incoming pitch infor-
mation to the events stored in its score. When a key number is received in the 2nd 
(pitch) inlet, and it is the same as the pitch of the current note in the score, deto-
nate sends out the information recorded for that event—except for the delta 
time—and then moves ahead to the next note event.

followat The word followat, followed by a pitch, a velocity, and a MIDI channel number, 
causes detonate to look for a note event with those attributes in its stored score. If 
such a note is found, detonate commences score-following from the next event 
onward. If not, it simply prints detonate: note not found in the Max window.

startat The word startat, followed by a pitch, a velocity, and a MIDI channel number, 
causes detonate to look for a note event with those attributes in its stored score. If 
105 



detonate  Graphic score of
note events
such a note is found, detonate sends out the delta time of the next event, and a 
subsequent next message will refer to that next event. If no such note is found, det-
onate simply prints detonate: note not found in the Max window.

stop Stops detonate from recording, playing, or following. It is not necessary to stop 
detonate before switching directly between record, start, and follow.

mute Permits the selective muting of note events that meet specific criteria. The word 
mute must be followed by an event parameter number, a parameter value, and a 
value of 1 or 0 signifying “mute” or “unmute”. Event parameters are numbered 
beginning at 0 for delta time, 1 for pitch, etc. For example, the message mute 4 10 1 
mutes notes on MIDI channel 10 (channel is parameter 4), preventing their note 
information from being sent out; those notes can later be unmuted by the mes-
sage mute 4 10 0.

unmute The word unmute, followed by an event parameter number and a parameter value, 
undoes an earlier mute of the same criterion. For example, unmute 4 10 has the same 
meaning as mute 4 10 0.

unmuteall Undoes the effects of all previous mute messages.

params The word params, followed by three numbers, modifies the score-following behav-
ior of detonate for cases when the received pitch does not match the pitch of the 
current note in the score. The first number tells detonate how many errors to tol-
erate before moving ahead in the score. The second number tells how many milli-
seconds to move ahead in the score when too many errors have occurred. The 
third number, if non-zero, tells detonate to treat a received pitch that is an octave 
too high or too low as if it were a match. For example, the message params 3 1000 1 
means to allow three successive errors (with octave displacements considered to 
be a match) before moving ahead one second in the score and resuming. By 
default, detonate allows 2 errors before moving ahead 200 milliseconds, and does 
not consider octave pitch displacements to be a match for the stored note.

write Opens a dialog for saving the contents of detonate as a standard MIDI file. The 
word write may optionally be followed by up to two numbers. If the first number is 
non-zero, the file will be saved with time represented in milliseconds rather than 
as bars, beats, and ticks in a certain tempo. If the number is 0 or not present, the 
file is saved as beats. The second number indicates the MIDI file format: 0 (all 
notes on a single track) o multi-track format, using the track parameter to sepa-
rate the notes). The contents of detonate are also saved as part of the patch, when 
the patch is saved.

read The word read by itself opens a dialog for loading in a standard MIDI file as con-
tents of the detonate score. If read is followed by the name of a MIDI file in Max’s 
search path, that file is read in directly without opening a dialog box. The read 
message can also be followed by a number which—if non-zero—causes the time 
values in the file to be interpreted as milliseconds rather than as bars, beats and 
 106



detonate Graphic score of
note events
ticks at a certain tempo. If the number is 0 or not present, the times are read as 
bars and beats.

export Same as write.

import Same as read.

(mouse) Double-clicking on detonate in a locked patcher opens an editor window to dis-
play a graphic representation of the note events. The editor window can show the 
event information in various ways, and contains a small palette of tools for editing 
the notes or entering new notes.

You can draw new notes with the pencil tool. The starting time of note events is 
always represented on the x axis of the graph. The default parameters of the drawn 
notes are shown in (and can be changed by dragging upon) the number boxes at 
the top of the editor window. You can change the meaning ascribed to the y axis, 
and to the length of the drawn note, by clicking on the icons to the left of the 
parameter names. By default the y axis is pitch and the horizontal length of the 
note shows its duration.

You can select existing notes with the selection tool, and drag them either verti-
cally (by clicking in the middle of a note) or horizontally (by clicking on the left 
side of note). Dragging on the right side of a note enables you to lengthen or 
shorten it. The parameters of selected notes can also be changed with the number 
boxes at the top of the editor window.

The tweak tool works the same as the selection tool, but allows for finer resolution 
dragging adjustments. Clicking on the graph with the zoom tool enlarges that 
area of the graph for more precise editing. Option-clicking on the graph with the 
zoom tool zooms back out.

Arguments
symbol Supplies a name to be shown in the title bar of detonate’s graphic editor window. 

Any detonate objects with the same name argument will share the same event 
data. They will also share event data with any edetonate timeline editor that has 
the same name.

Output
When detonate receives a start message or a startat message in the left inlet, it sends 
out the delta time of its starting note event (or of the note after the found note, in 
the case of startat). After that, each time detonate receives a next message, it sends 

selection tool

tweak tool

zoom tool

pencil tool
107 



detonate  Graphic score of
note events
out all the other note data for that event, and the delta time of the next event, pro-
gressing through the score. Thus, the numbers coming out the left outlet can be 
used to control the playback rhythm, by delaying for the specified time and then 
triggering the next next message.

When detonate receives an nth message (or receives a number, while stopped) in 
the left inlet, it uses that information as an index number (starting at index num-
ber 0 for the first note event) and sends out all note data for the indexed event. 
Instead of sending the note’s delta time out the left outlet, however, it sends the 
start time of the note—the total time since the beginning of the score.

After detonate has received a follow or followat message in the left inlet, if a number 
is received in the 2nd inlet that matches the pitch of the current note in the score 
(or one of the two notes immediately after it), all the data for the matched note is 
sent out, except for the delta time.

int Out left outlet: When a start, startat, or subsequent next message is received in the 
left inlet, the delta time of the next note event is sent out. When the last event in 
the score is played by a next message, there is no note following that one, so a 
unique delta time of -1 is sent out to signal that the last note has been played.

When an nth message is received in the left inlet (or an int if detonate is stopped), 
the starting time of the specified note is sent out.

Out 2nd outlet: In response to an nth message, or an int while detonate is stopped, 
or a next message while playing back, or a matched pitch while following, the pitch 
of the note is sent out.

Out 3rd outlet: The velocity of the note.

Out 4th outlet: The duration of the note.

Out 5th outlet: The MIDI channel of the note.

Out 6th outlet: The track number of the note.

Out 7th outlet: An extra value associated with the note.

Out right outlet: A second extra value associated with the note.
 108



detonate Graphic score of
note events
Examples

Note events are recorded with a delta time, which can be used to play notes back in rhythm

See Also

follow Compare a live performance to a recorded performance
seq Sequencer for recording and playing MIDI
timeline Time-based score of Max messages
Detonate Graphic editing of a MIDI sequence
Sequencing Recording and playing back MIDI performances
109 



dial Output numbers by
moving a dial onscreen
Input
int The number received in the inlet is displayed graphically by dial, and is passed out 

its outlet. Optionally, dial can multiply the number by some amount and add an 
offset to it before sending it out the outlet.

The dial will also send out numbers in response to clicking or dragging on it 
directly with the mouse.

float Converted to int.

bang Sends out the number currently stored in dial.

color The word color, followed by a number from 0 to 15, sets the color of the center cir-
cle of the dial to one of the object colors which are also available via the Color 
command in the Object menu.

min The word min, followed by a number, sets value that will be added to the dial 
object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The dial object’s 
value will be multiplied by this number before it is sent out the outlet. The multi-
plication happens before the addition of the Offset value. The default value is 1.

set The word set, followed by a number, changes the displayed value of the dial, with-
out triggering output.

size The word size, followed by a number, sets the range of the dial object. The default 
value is 128. Setting the size to 1 disables the dial visually (since it can only display 
one value). Any specified size less than 1 will be set to 2.

Inspector
The behavior of a dial object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any dial object displays the dial Inspector in 
the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The dial Inspector lets you enter a Dial Range value. Numbers received in the inlet 
are automatically limited between 0 and the number 1 less than the specified 
range value. The default range value is 128. You can specify an Offset value which 
will be added to the number, after multiplication. The default offset value is 0. The 
dial Inspector also lets you specify a Multiplier. The dial object’s value will be mul-
tiplied by this number before it is sent out the outlet. The multiplication happens 
before the addition of the Offset value. The default multiplier value is 1.
110



dial Output numbers by
moving a dial onscreen
 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Output
int Numbers received in the inlet, or produced by clicking or dragging on dial with 

the mouse, are first multiplied by the multiplier, then have the offset added to 
them, then are sent out the outlet.

Examples

See Also

hslider Output numbers by moving a slider onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Produce output by dragging onscreen... or use to display numbers passing through
111



dialog  Open a dialog box
for text entry
Input
symbol In left inlet: The word symbol, followed by any word, opens a dialog box prompt-

ing the user to enter text. The word following symbol is shown as the default text. If 
you want more than one word to appear as the default text, you must enclose the 
words in single smart quotes (“, obtained by typing option-] and shift-option-]) 
or precede the spaces with a backslash (\).

bang In left inlet: Opens the dialog box with the previous text displayed as the default.

int In left inlet: Same as symbol.

In right inlet: The number 0 sets dialog so that whatever the user types into the 
dialog box is sent out as a symbol preceded by the word symbol. A nonzero number 
sets dialog so that the typed-in text is sent out exactly as is if it begins with a word, 
or preceded by the word list if it begins with a number. If no number is received, it 
is considered 0 by default.

Arguments
anything Optional. Sets the prompt which will appear above the text entry box in the dialog 

window.

Output
symbol If the user clicks OK, dialog makes a symbol out of the entered text (even if it’s a 

number or it’s more than one word) and sends it out its outlet with the word symbol 
prepended. If a nonzero number has been received in the right inlet, the typed-in 
message is sent out as is (without being preceded by the word symbol). This mes-
sage can be displayed by prepending the word set and sending it to a message box 
(as shown in the example). If the user clicks Cancel, nothing is sent out.

Since your patch continues to run while waiting for the user to type text into your 
dialog box, you can’t count on getting the typed-in symbol immediately after 
sending the message that opens the dialog box.
 112



dialog Open a dialog box
for text entry
Examples

See Also

message Send any message
opendialog Open a dialog to ask for a file or folder
savedialog Open a dialog to ask for a filename for saving
sprintf Format a message of words and number

Typed-in message is sent out when OK button is clicked;
other processes continue while dialog box is open

A dialog box is opened
by the dialog object
113 



  

dropfile 

 

Define a region for
dragging and dropping a file

                                              
Input
(drag) When a file icon is dragged from the Finder onto a dropfile object in a locked 

patcher window, the object checks the file’s type against those that it has been told 
to accept. If the file is of an acceptable type, the outline of the dropfile box is high-
lighted. If the mouse button is released while the cursor is inside the dropfile box, 
the dropfile object outputs the type and full pathname of the file out its outlets.

types The word types, followed by one or more type codes of up to four characters, sets 
the file types that will be accepted by the dropfile object. Example type codes for 
Macintosh files are TEXT for text files, maxb for Max binary format patcher files, and 
AIFF for AIFF format audio files. types with no arguments makes the object accept 
all file types, which is the default setting.

border The word border, followed by a 1 or 0, sets whether the dropfile object draws a bor-
der around its box. The default is no border.

Arguments
None.

Output
symbol Out left outlet: When an acceptable file icon has been dragged onto dropfile and 

the mouse released within its box, the full pathname of the file is sent out as a sin-
gle symbol. A full pathname looks like this: 

’MyDisk:Max Folder:extras:filename’

If you want to use the dropfile object to cause a file to read by another object that 
accepts the read message with a filename argument, put a prepend read object 
between dropfile and the object that will open a file, as shown in the example 
below.

any symbol Out right outlet: The type code of the acceptable file is sent out the right outlet.
Objects dropfile - 114



dropfile Define a region for
dragging and dropping a file
Examples

See Also

absolutepath Convert a file name to an absolute path
relativepath Convert an absolute to a relative path
strippath Get filename from a full pathname
opendialog Open a dialog to ask for a file or folders
115 - dropfile Objects



drunk  Output random numbers
in a moving range
Input
bang In left inlet: Causes drunk to take a step of random size up or down from its cur-

rently stored value. It updates the stored value and sends it out the outlet.

int In left inlet: The number replaces the stored value and is sent out the outlet.

In middle inlet: The number is stored as the maximum value that can be output 
by drunk. (Note: If the specified maximum is less than 0 it is set to 0.)

In right inlet: The number limits the step size taken in response to a bang in the left 
inlet. The step (up or down) will always be less than the absolute value of this 
number.

float Converted to int.

list In left inlet: The second number in the list sets the maximum value output by 
drunk, and the third number (if present) limits the step size, then the first number 
replaces the stored value and is sent out the outlet.

set In left inlet: The word set, followed by a number, sets the stored value of drunk to 
that number without triggering output. The stored value is initially set in the cen-
ter of the total range (1/2 the maximum value).

seed In left inlet: The word seed, followed by a number, “seeds” the drunk object’s ran-
dom generator, which causes a specific (reproducible) sequence of pseudo-ran-
dom numbers to occur. The number 0 uses the time elapsed since system startup 
(an unpredictable value) as the seed, ensuring an unpredictable sequence of 
numbers. This unpredictable seed is used by default when the drunk object is cre-
ated.

Arguments
int Optional. The first argument sets an initial value for the maximum number which 

can be output by drunk. The second argument sets an initial limit on the size of 
random steps taken by drunk; the absolute value of the step size will always be less 
than the absolute value of this limit. If there are no typed-in arguments, the maxi-
mum value is set to 128 and the step size limit is set to 2 (movement up or down 
by no more than 1).

Output
int The number sent out the outlet is automatically limited between 0 and the speci-

fied maximum value, and differs from the previously stored number by less than 
the maximum step size.
 116



drunk Output random numbers
in a moving range
Examples

Numbers vary aimlessly in small steps taken within the total range

See Also

decide Choose randomly between on and off (1 and 0)
random Output a random number
urn Generate random numbers without duplicates
117 



env  Script-configurable
envelope editor
Input
bang Same as dump. Sends out a series of two-element lists, showing the array index and 

the value at that index for the horizontal and vertical position of each point the 
env, as specified in the object’s script.

float Converted to int.

set The word set, followed by an array index number and a value to be stored at that 
index, sets the value of that array index and redraws the point, without sending 
anything out the outlet.

embed The word embed, followed by any non-zero number, causes the contents of the 
script file to be saved as part of the patch that contains the env object—the next 
time the patch is saved—so that the env no longer needs to find the script file. The 
message embed 0 causes the env to forget the contents of the script file when the 
patch is closed. In either case, the patch must be saved after the embed message has 
been received in order for a change to take effect. 

open Causes the window associated with the env object to become visible. The window 
is also brought to the front. Double-clicking on the env object in a locked patcher 
has the same effect.

wclose Closes the window associated with the env object.

The env object is a script-configurable user interface for function editing, oriented toward the task 
of editing envelope data in synthesizer patch editors.

There are two flavors of this object—env displays and edits the envelope in its own windows, while 
envi (pronounced “envy”) is a user interface object which allows an envelope to be seen inside a 
patcher window. Unless otherwise noted, both objects will be referred to generically in the docu-
mentation as the env object.

The env object is configured by a script—a text file—which defines the number of points in an 
envelope and associates them with some number of data values. If the script is read in successfully 
(i.e. it contains no syntax errors), the user should be able to change displayed data points in the 
env window. env saves the name of the last script file read and will try to locate it the next time its 
owning patch is loaded.

Arguments
symbol The env object takes an optional argument which is a symbol that names a script 

file to be read in which will define the behavior and appearance of the envelope.

Since the envi object is a user interface object, it doesn’t have a typed-in argument. However, in 
both the env and envi objects, the name of the last script file read in is saved in the patcher file con-
taining the object.
 118



env Script-configurable
envelope editor
A new script file can be opened with the read message. And selecting the envi object and choosing 
Get Info… from the Object menu puts up Open Document dialog box for selecting a new script 
file to be read in.

Structure of an Envelope

The envelope is defined by a set of hierarchically arranged script messages. Both env and envi use 
identical format for script files. 

Each env object consists of a window (technically in envi, a box in a patcher window), a number of 
groups, each of which contain points which are logically connected. Each point contains horizon-
tal and/or vertical aspects, and each aspect can contain one or more display scales, which map 
internal data values to those displayed on the legend of the envelope window.

Script Messages

The format of a script file is similar to the script for a lib object. It consists of #E followed by a mes-
sage keyword (such as group or point), followed by that message’s arguments. See the Script Exam-
ples section below for examples.

The window message

Defines parameters applying to the entire env object and its display.

symbol 1. Title of the envelope window (doesn’t apply to envi). To use spaces in the title, 
use single “smart” quotes (option-right bracket and option-right brace).

int 2. Horizontal size. Size of the window (or box, in the case of envi) in pixels. For 
the window, the size will be actually be 15 pixels larger to accommodate the scroll 
bars.

int 3. Vertical size.

int 4. Number of groups. Each group will be defined in subsequent group messages 
(see below).

int 5. Number of data values that define the envelope(s).

int 6. Left margin. Distance in pixels from left edge of the window (box) where the 
envelope and text legend is drawn.

int 7. Bottom margin. Distance in pixels from bottom edge of the window (box) 
where the envelope is drawn.

int 8. Top margin. Distance from the top of the window (box) where the envelope is 
drawn. This should take into account the legend (which is 15 pixels), so a value of 
20 or more pixels is suggested.
119 



env  Script-configurable
envelope editor
The group message

Defines a group of logically connected points, what would usually be thought of as an “enve-
lope”—but the env object allows an arbitrary number of groups in a single window.

int 1. Group number. Specifies the group (starting at 1) being defined.

symbol 2. Group name. Precedes the name of any specific parameter and value in an 
envelope legend display. The word none can be used to indicate that no group 
name is desired.

int 3. Number of points in this group. Each will be defined below with a point mes-
sage.

int 4. Visible. 1 if this group is initially visible, 0 if it isn’t.

int 5. Display flags. 1 if you only want the parameter names and values of a point 
being dragged. 0 if you want all the parameter names and values displayed when a 
point in the group is being dragged. Other display flags may be defined later.

int 6. (Optional) Color. 1-255 as an index into the palette used by the application 
(stored as pltt resource ID 9998 or 9997 when 16 colors are used).

The point message

Defines the appearance of a “point” in an envelope.

int 1. Point number being defined. The first point in any group is number 1.

int 2. Button size (in pixels) of the round or square “button” centered at this point.

int 3. Button flags. The rightmost bit (i.e. 0 or 1) is 0 if the button is to be square and 1 
if the button is to be round. Bit 1 (i.e. 0 or 2) is 1 if the button is solid, 0 if it is 
transparent. Bits 2-6 (inclusive) specify an index for a black and white pattern. 
Use ResEdit to examine the System File and look at PAT# ID 1 for the indices of 
common black and white patterns.

int 4. Line-from point. If non-zero, specifies another point, which should always be 
numbered less than this point, which is to be connected to this point with a line. 
This connection is only a display property. Logical dependencies between points 
are specified in the horiz and vert messages below.

The horiz and vert messages

These messages define the two directional aspects of each point. Most of the “meat” of the enve-
lope specification is contained in these messages. If you wish to keep one of the directions fixed, 
you need not define that direction for a particular point. The arguments to horiz and vert are identi-
cal, except where noted.
 120



env Script-configurable
envelope editor
symbol 1. Parameter name. The name (e.g. ‘Rate 1’) associated with moving the point in 
this direction. none can be used if there is no parameter name associated with this 
point.

int 2. Data index. The index into the array of data values (starting at 0) correspond-
ing to the value of this parameter. If there is no data associated with this direction, 
use -1 (this will not be uncommon for one or more directions of one or more 
points in an envelope). When a list containing this data index and a value is sent 
to the env object, this point will move accordingly.

Note that all data values are stored as integers. You can display a floating point 
number in the legend for this parameter by defining a scale expression or table 
(see the scale message below).

int 3. Minimum value of this parameter.

int 4. Maximum value of this parameter.

int 5. Initial value of this parameter.

int 6. Increment of this parameter. Not currently supported, should be set to 1.

symbol 7. Unit name. The units of this parameter (e.g. ms for milliseconds or % for per-
centage). none may be used if the units are not tied to any particular units, such as 
the rate and level units on Yamaha synthesizers).

When two points are “tied together” in the horizontal or vertical direction it 
means that changes in one point are linked to others. Ties are expressed in terms 
of higher numbered points being tied to lower numbered ones. There are two 
types of ties—absolute and relative. An absolute tie means that a point changes its 
position on the screen to assume the exact value of another point. A relative tie, 
which is very common for horizontal aspects, means that the location of any 
point on the screen is based on a distance from another point. The common 
envelope shown in the second Script Example section below has point 2 with a 
relative horizontal tie to point 1, point 3 with a relative horizontal tie to point 2 
(and hence to point 1), and point 4 with a relative horizontal tie to point 3. If 
point 1 is allowed to move left and right (as for example if there were an initial 
delay for the envelope, all the other points would move as well. None of the points 
are vertically tied to each other, although in a DX7 envelope which has a non-zero 
final level, it is customary to tie points, points 1 and 4 would be absolutely verti-
cally tied. You cannot tie the horizontal direction of one point to the vertical 
direction of another.

int 8. Absolute tie point. Point number that this point is absolutely tied to (must be 
less than this point number). This point will appear at the exact same horizontal 
or vertical position as the point it is tied to. Use 0 if this point is not tied.
121 



env  Script-configurable
envelope editor
int 9. Fixed. If this point is fixed at a particular position on the screen, use 1. Other-
wise use 0. This may be true for the horizontal or vertical direction of the first 
(leftmost) point in an envelope.

int 10. Relative tie point. Point number that this point is relatively tied to (must be 
less than this point number) in this direction. This point’s position will be an off-
set (depending on its value) from the position of the point being tied to in the 
horizontal or vertical direction. Use 0 if this point is not relatively tied to other 
points in this direction (commonly true for the vertical direction).

int 11. Positive direction. Sets which direction the value of a point increases. For the 
vertical direction, 0 indicates that the value increases as the cursor is moved to the 
top of the screen, while 1 indicates that the value increases as the mouse is moved 
to the bottom of the screen. For the horizontal direction, 0 indicates that the value 
increases as the cursor is moved to the left, while 1 indicates that the value 
increases as the cursor is moved to the right.

int 12. Coverage size. Determines how many pixels the range of the parameter is 
mapped into. For a garden variety envelope, you generally use most of the entire 
vertical space for the vertical direction, so you would use a formula like:
<window vertical size> - <legend height> - <top margin> - <bottom margin>
For the horizontal direction, the amount of space you use should be determined 
by the number of points in the envelope, and how much scrolling you want to 
require the user to do if the envelope is stretched to its maximum width.

The scale message

Defines a conversion between the internal values (integers) used to store the data in an envelope 
and their displayed values, which may be floating point numbers. When envelope parameters rep-
resent physical quantities, manufacturers often use scale factors. In the scale message, you can 
specify a mathematical expression to convert the internal format to another integer or floating 
point number which is displayed in the legend.

A scale can be expression in the form of the arguments to the expr object, or it can be a list of values 
(including symbols) to which the internal data values map.

Each direction can have an arbitrary number of scales, each of which is applicable over a specified 
range. If there is no scale which applies to a data value, the legend will display the internal data 
value. One use of a scale in this context might be if the lowest value of an envelope signified 
“Off ”—you could have a scale that mapped 0 to the word “Off ” but left the other values 
unchanged.

int 1. Minimum. Lowest value for which this scale applies.

int 2. Maximum. Highest value for which this scale applies.

int 3. Floating-point digits. Number of digits after the decimal point used to display 
floating-point numbers in the legend.
 122



env Script-configurable
envelope editor
symbol 4. The word is or table. Determines whether what follows is interpreted as a math-
ematical expression or a table of values used for mapping.

5. Additional data. For expressions: $i1 represents the internal data being mapped 
to the legend. Examples:

is $i1 * .07;Multiplies the internal value by a scale factor

is $i1 - 1;Subtracts 1 from the internal value

is ($i1-1)*.07;Compound expression

is 100 - $i1;Inverting an internal value

For tables: a list of values which map successive values of the internal data sepa-
rated by spaces. The table can contain up to 240 elements. Use additional scale 
messages for larger tables. Example:

table Off 10 20 30 40;

Here, the minimum value will be mapped to the word “Off ”, next value to 10, 
next value to 20 etc.

Other Example scale messages:

#E scale 0 0 0 table Off; (Maps the minimum value to the word “Off.”)

#E scale 1 10 2 is $i1 * .04;(Scales additional values by .04 and prints as floating-point 
number with 2 decimal places.)

The phase message

This message specifies that the previously defined vert aspect of a point has a signed component. 
Either the parameter of the envelope can be a negative number, or there is a separate data value 
that represents the phase (0 for negative, 1 for positive). The phase message must immediately fol-
low the vert message it modifies.

The comment message

This message begins a comment in the envelope script, which must be contained on a single line 
and terminated with a semicolon.

The end message

This message is required at the end of an envelope script. It reconfigures the env object and 
changes the display in its window or box if necessary. It has no arguments.
123 



env  Script-configurable
envelope editor
Script Examples

The following script defines an envelope which consists of 4 groups of individual points which are 
used in an early reflection tap editor. The horizontal position of the point determines a delay and 
the vertical position determines a percentage of the original signal to repeat. A picture is shown 
after the script.

#E window ERFEnv 400 148 4 96 8 8 24;
#E group 1 EarlyReflection1 1 1 1;
#E point 1 8 1 0;
#E horiz time 0 1 500 1 1 ms 0 0 0 0 100;
#E vert level 1 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 2 EarlyReflection2 1 1 1;
#E point 1 8 1 0;
#E horiz time 2 1 500 1 1 ms 0 0 0 0 100;
#E vert level 3 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 3 EarlyReflection3 1 1 1;
#E point 1 8 1 0;
#E horiz time 4 1 500 1 1 ms 0 0 0 0 100;
#E vert level 5 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E group 4 EarlyReflection4 1 1 1;
#E point 1 8 1 0;
#E horiz time 6 1 500 1 1 ms 0 0 0 0 100;
#E vert level 7 0 1024 0 1 % 0 0 0 0 100;
#E scale 0 1024 2 is $i1 * .0977;

#E end;

Picture of object for Script Example #1
 124



env Script-configurable
envelope editor
The following script defines a two groups with more traditional synthesizer amplitude envelopes 
that have three points. The first point is fixed in the vertical direction but moves horizontally. The 
other two points move in both directions, and all three points are connected by a line. A picture is 
shown after the script.

#E window TestEnv 400 148 2 10 8 8 24;

#E group 1 Thing1 3 1 0;
#E point 1 8 0 0;
#E horiz Delay 0 0 99 0 1 ms 0 0 0 0 100;
#E vert none -1 0 99 0 0 none 1 0 0 0 100;
#E point 2 8 0 1;
#E horiz Rate1 1 0 99 50 1 ms 0 0 1 1 100;
#E vert Level1 2 0 99 50 1 ms 0 0 0 0 100;
#E point 3 8 0 2;
#E horiz Rate2 3 0 99 50 1 ms 0 0 2 1 100;
#E vert Level2 4 0 99 50 1 ms 0 0 0 0 100;

#E group 2 Thing2 3 1 0;
#E point 1 8 3 0;
#E horiz Delay 5 0 99 0 1 ms 0 0 0 0 100;
#E vert none -1 0 99 0 0 none 1 0 0 0 100;
#E point 2 8 3 1;
#E horiz Rate1 6 0 99 50 1 ms 0 0 1 1 100;
#E vert Level1 7 0 99 50 1 ms 0 0 0 0 100;
#E point 3 8 3 2;
#E horiz Rate2 8 0 99 50 1 ms 0 0 2 1 100;
#E vert Level2 9 0 99 50 1 ms 0 0 0 0 100;
#E end;

Picture of Object for Script Example #2

Input Messages

Because it can have an arbitrary number of data values, the env object has only one inlet. The 
envelope data is stored in an array. The script file specifies how array indices correspond with hor-
izontal and vertical aspects of the points in an envelope.

list A list received by env stores a new value in a data point. The first number in the list 
specifies the location (array index), and the second number is the data value to 
125 



env  Script-configurable
envelope editor
store at the location. The env object limits the range of its input values, according 
to the minimum and maximum of each data point specified in the script file.

The funnel object takes a number in one of its inlets and outputs a list with the first 
element being the index of the inlet and the second element being the incoming 
number. It was designed to be used to prepare the lists required by the env object.

int If the number is between 0 and the maximum array index, env outputs a list con-
taining the index followed by the data value at the array index.

show The word show, followed by a group number, makes that group visible. Followed 
by two numbers, makes a range of groups visible from the first to the second 
number.

hide The word hide, followed by a group number, makes that group invisible. Followed 
by two numbers, makes a range of groups invisible from the first to the second 
number.

open Opens the env object’s display window if its closed, or brings it to the front. 
Doesn’t apply to the envi object.

read Puts up a standard Open Document dialog for the user to select a new script file 
for configuring the object.

dump Outputs all the current data values of the envelope, as successive two element lists. 
The first number is the data index and the second is the data value.

Output
list When the mouse button is released or a number is received in its inlet, env sends 

lists outs its outlet which consist of two numbers. The first is an array index and 
the second is the new value at that index. Only newly modified values are output. 
When env receives the dump message in its inlet, all data values are sent out in this 
list format.

The spray object takes a list as input and sends the second element out the outlet 
number specified by the first element. It was designed to distribute the lists output 
by the env object to individual outlets for display by number boxes or to send to 
librarian editor objects such as libto.

Using an Envelope Window or Box

The envelope display has two areas separated by a horizontal line—the upper area of 15 pixels 
contains a legend of text in 9 point Geneva that indicates the names and values of the points the 
user is currently changing. The lower area contains the actual groups of points which may or may 
not be connected by lines.
 126



env Script-configurable
envelope editor
The use of the env object’s window (or the envi object’s box) is simple—just click on one of the vis-
ible points. With no modifier keys held down, data values are incremented by a pixel’s worth of 
movement. How much this amounts to is determined by the ratio of each direction’s Coverage size 
argument to its parameter range (difference between maximum and minimum values). For exam-
ple, in the first example script above, there are 1024 data points and a Coverage size of 100, so 
moving the cursor one pixel changes the value by 1024/100, or about 10.

With the shift key down, movement of a point being dragged is constrained to the direction the 
cursor moves in first. Releasing the shift key at any time removes the constraint.

With the command key held down, mouse movement is in “fine mode”—no matter what the ratio 
of parameter range to Coverage size, the parameter data is changed by 1 with each pixel you move 
the mouse.

Fine mode can be entered or left instantaneously by pressing or releasing the command key while 
dragging the mouse.

See Also

envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
funnel Tag data with a number that identifies its inlet
line Output numbers in a ramp from one value to another
multiSlider Multiple slider and scrolling display
spray Distribute an integer to a numbered outlet
127 



 128

envi  Script-configurable envelope
in a patcher window

The envi object is the patcher window version of the env object. The discussion of the env object 
covers both objects.



error Max window errors
as messages

129 

Input
int The error object allows you to catch errors and output them as Max messages. A 

non-zero number starts the error object “listening” for Max errors. The error 
object must be listening to produce any output. A 0 turns off listening.

float Converted to int.

Arguments
None.

Output
symbol Any Max error generated by any object in any patch while the error object is lis-

tening is sent out the outlet preceded by the symbol error. The messages are output 
as individual words so you can check for specific failures.

If you want to strip off the initial error message from the object’s output, use a route 
error object. If you want to use the error object’s output as a message, put a prepend 
read object between route error and the object that will process the error message.

Examples

Intercept error messages

See Also

print Print any message in the Max window



expr  Evaluate a
mathematical expression
Input
int The number received in each inlet will be stored in place of the $i or $f argument 

associated with it. (Example: The number in the second inlet from the left will be 
stored in place of the $i2 and $f2 arguments, wherever they appear.)

float The number in each inlet will be stored in place of the $f or $i argument associated 
with it. The number will be truncated by a $i argument.

symbol The word symbol, followed by the name of a table, will be stored in place of the $s 
argument associated with that inlet, for accessing values stored in the table.

bang In left inlet: Evaluates the expression using the values currently stored.

list In left inlet: The items of the list are treated as if each had come in a different inlet, 
and the expression is evaluated. If the list contains fewer items than there are 
inlets, the most recently received value in each remaining inlet is used.

Any of the above messages in the left inlet will evaluate the expression and send 
out the result. If a value has never been received for each changeable argument, 
that value is considered 0 when the expression is evaluated.

The number of inlets is determined by how many changeable arguments are 
typed in. The maximum number of inlets is 9.

set In left inlet: The word set, followed by one or more numbers, treats those numbers 
as if each had come in a different inlet, replacing the stored value with the new 
value, but the expression is not evaluated and nothing is sent out the outlet. If 
there are fewer numbers in the message than there are inlets, the stored value in 
each remaining inlet stays unchanged.

Arguments
Obligatory. The argument is a mathematical expression, in a format resembling 
the C programming language. The expression is made up of numbers, arithmetic 
operators such as + or *, comparisons such as < or >, C functions such as min() or 
pow(), names of table objects, and changeable arguments ($i, $f, and $s) for ints, 
floats, and symbols received in the inlets.

int or float Numbers can be used as constants in the mathematical expression.

$i or $f A changeable int argument is specified by $i or $f and an inlet number (example: 
$i2). The argument will be replaced by numbers received in the specified inlet.

$s The argument $s and an inlet number is replaced by the name of a table to be 
accessed. The argument should be immediately followed by a number in brackets 
specifying an address in the table. (Examples: $s2[7] or $s3[$i1].)
 130



expr Evaluate a
mathematical expression
(other) Arithmetic operators understood by expr are: +, -, *, /, %. Other operators are ~ 
(one’s complement), ^ (bitwise exclusive or), &, &&, |, ||, and ! (not).

Many C language math functions can be understood by expr. A function must be 
followed immediately by parentheses containing any arguments necessary to the 
function. If the function requires a comma between arguments, the comma must 
be preceded by a backslash (\) so that Max will not be confused by it. For exam-
ple: pow($i1\,2).

C language functions understood by expr are: abs, min, max, sin, cos, tan, asin, 
acos, atan, atan2, sinh, cosh, tanh, int (convert to integer), float (convert to float), 
pow, sqrt, fact (factorial), exp (power of e to x), log10 (log), ln or log (natural 
log), and random. Additional functions can be added by means of external code 
resources placed in Max’s startup folder.

Output
int or float The output is the result of the evaluated expression.

Examples

Combine many calculations into one object, even using functions not available in other objects

See Also

if Conditional statement in if/then/else form
vexpr Evaluate a math expression for a list of different inputs
Tutorial 38 expr and if
131 



 132

filedate  Report the modification date
of a file

Input
symbol A full pathname as a symbol. A full pathname looks like this:

 ’MyDisk:Max Folder:extras:filename’

Arguments
None.

Output
list Sends the date that the file was last changed as a list (month, day, year, hours, min-

utes and seconds).

Examples

filedate displays how recently a file has been changed

See Also

date Report current date and time 
filein Read in a file of binary data
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder



filein Read in a file
of binary data
Input
int Specifies a byte offset in a binary file, and outputs the data stored at that point in 

the file.

In left inlet: The byte contained at that offset in the file is sent out the left outlet.

In middle inlet: The 16-bit word contained at that byte offset in the file is sent out 
the left outlet as an unsigned (short) integer.

In right inlet: The 32-bit word contained at that byte offset within the file is sent 
out the left outlet as an unsigned (long) integer.

list In left inlet: The second number in the list is received in the middle inlet, then the 
third number in the list (if present) is received in the right inlet, and then the first 
number in the list is received in the left inlet. Output is sent out the left outlet in 
the corresponding order.

read Displays a standard file dialog to select a file to be read into memory. If the word 
read is followed by a filename found in Max’s search path, that file will be automat-
ically read into memory.

spool Displays a standard file dialog to select a file, which will be accessed from disk 
whenever an int is received. If the word spool is followed by a filename found in 
Max’s search path, that file will be automatically pointed to for future access. This 
method of accessing a file occupies less RAM, but does not output data immedi-
ately at interrupt level in response to an int message.

fclose Closes the file being read, making filein no longer respond to int or list messages.

Arguments
symbol Optional. Specifies a filename to be read into the filein object automatically when 

the patch is loaded. If the filename is followed by a second argument, spool, the file 
will be accessed from disk rather than read into memory.

Output
int Out left outlet: An unsigned integer representing the 8, 16, or 32 bits stored in the 

file at the location specified by the input int.

bang Out middle outlet: When a number greater than or equal to the number of bytes 
in the file is received in an inlet, a bang is sent out signifying that the end of the file 
(EOF) has been reached.

Out right outlet: Signifies that a read or spool operation has been completed. This 
bang indicates that the file has been accessed successfully and that filein is ready to 
receive int messages.
133 



filein  Read in a file
of binary data
Examples

Retrieve data from any binary file

Output the content of a file in 8-, 16-, or 32-bit chunks 

See Also

Text Format messages as a text file
 134



filepath Report information about
the current Max search path
Input
any symbol A full pathname as a symbol. A full pathname looks like this:

 ’MyDisk:Max Folder:extras:filename’

bang A bang causes the currently saved path name(s) to be output as a list.

append The word append, followed by a symbol which specifies a folder, adds the folder to 
the list of paths (but does not save it in the Preferences file).

set The word set, followed by the name of a Max search path type (search, startup, help, 
action, or default), sets the current search path to the type specified.

revert Causes the pathnames to be reset to the last set of Max file preferences to be saved.

clear Causes the currently specified search path to be cleared.

Arguments
symbol Obligatory. Specifies one of the Max search path types (search, startup, help, action, 

or default) 

int Optional. A number greater than zero specifies a slot in the Preferences file. If the 
argument is 0 or no number is supplied, the path will not be saved in the Prefer-
ences file—you can use this feature to create temporary search paths for a patch. 
The action, help, and startup paths only have one slot. The search path can have 
up to 256 slots (normally there are about 8). The default path is never saved in the 
Preferences file.

Output
symbol  The current stored path name in response to a bang.

Examples

Use filepath to check your search path or temporarily set search path slots for a patch
135 



filepath  Report information about
the current Max search path
See Also

filedate Report the modification date of a file
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder
 136



float / f Store a
decimal number
Input
float In left inlet: The number replaces the currently stored value and is sent out the 

outlet.

In right inlet: The number replaces the stored value without triggering output. 

bang In left inlet: Sends the stored value out the outlet.

set In left inlet: The word set, followed by a number, replaces the stored value without 
triggering output.

send In left inlet: The word send, followed by a name of a receive object, sends the num-
ber stored in the float object to all receive objects with that name, without sending 
it out the float object’s outlet.

int Converted to float.

Arguments
float Optional. Sets an initial value to be stored in float. If there is no argument, the ini-

tial value is 0.0. A float argument by itself, without the word float, is another way of 
creating and initializing a float object.

Output
float A number is stored in float as a single-precision floating point number. The preci-

sion possible in the decimal portion of the number decreases as the integer part 
increases. Note: Because of the way decimal numbers are stored, a float value 
saved in a patcher file might be slightly altered when the file is reopened.

Examples

Output the stored value Replace stored value and output it Initial value is given
137 



float / f  Store a
decimal number
See Also

int Store an integer value
pv Share variables specific to a patch and its subpatches
value Share a stored message with other objects
Tutorial 21 Storing numbers
Data Structures Ways of storing data in Max
 138



flush Provide note-offs
for held notes
Input
int In left inlet: The number is treated as the pitch value of a pitch-velocity pair and 

the note is sent out.

In right inlet: The number is stored as the velocity to be paired with numbers 
received in the left inlet.

list In left inlet: The numbers must be ints. The first number is treated as the pitch, 
and the second number is treated as the velocity, of a pitch-velocity pair, and the 
numbers are sent out the outlets.

bang In left inlet: Immediately sends note-offs for any pitches that have passed through 
as note-ons but not as note-offs by sending 0 out its right outlet followed by a 
pitch value out its left outlet.

clear In left inlet: Erases any numbers held by flush, without sending any note-offs.

Arguments
None.

Output
int Out left outlet: The output is the pitch of the note-on or note-off.

Out right outlet: The number is the velocity of the note-on or note-off.

The flush object keeps track of the notes that have passed through it. When a bang 
is received in the inlet, note-off messages are provided for any notes that have 
passed through as note-ons only.

Examples

Make sure all notes are turned off by providing note-offs for held notes
139 



flush  Provide note-offs
for held notes
See Also

bag Store a collection of numbers
Borax Report current information about note-ons and note-offs
makenote Generate a note-off message following each note-on
midiflush Send note-offs for hanging note-ons in raw MIDI data
offer Store x,y pairs of numbers temporarily
stripnote Filter out note-off messages, pass only note-on messages
sustain Hold note-off messages, output them on command
Tutorial 13 Managing note data
 140



folder List the files
in a specific folder
Input
bang Gets the names of all files of a specific type within a specific folder, and outputs 

those names to be placed in a message object or a pop-up umenu object.

symbol Specifies the complete pathname of a folder, and causes the contents of that folder 
to be output for storage in a umenu or a message.

There are two special characters that can be used at the beginning of a pathname. 
The caret (^) symbolizes the name of the startup volume, and the colon (:) sym-
bolizes the name of the folder that contains the Max application. These special 
characters will enable a given pathname to work correctly even if those folder 
names are subsequently changed. The colon is also used within the pathname to 
indicate a subfolder.

If the pathname contains any spaces, you will need to enclose the pathname in 
single smart quotes (“) in order to cause folder to understand the pathname as a 
single argument. Alternatively, you can precede each space with a backslash (\) so 
that folder won’t treat that space as a special character.

types The word types, followed by one or more type codes of up to four characters, sets 
the file types that the folder object will look for in the specified folder. Example 
type codes for Macintosh files are TEXT for text files, maxb for Max binary format 
patcher files, and AIFF for AIFF format audio files. The word types with no argu-
ments makes the object accept all file types, which is the default setting.

int Same as bang.

Arguments
symbol Optional. Specifies the complete path to a folder on any mounted volume.

Output
clear Out left outlet: When a pathname or a bang is received in the inlet, the first mes-

sage that is sent out the left outlet is clear, which is intended to erase the contents of 
a receiving message or umenu object.

append Out left outlet: Immediately following the clear message, each filename in the 
specified folder is sent out in alphabetical order preceded by the word append.

int Out right outlet: When a pathname or a bang is received in the inlet, the number 
of items in the folder is sent out the right outlet.
141 



folder  List the files
in a specific folder
Examples

Read in filenames from a folder, then call them up from a pop-up menu

See Also

filein Read in a file of binary data
filepath Report information about the current search path
opendialog Open a dialog to ask for a file or folder
pcontrol Open and close subwindows within a patcher
 142



follow Compare a live performance
to a recorded performance
Input
record Starts recording integers received in the inlet.

bang Starts playing back the sequence stored in follow.

start The word start by itself has the same effect as bang. The word start, followed by a 
number, plays the stored sequence at a tempo determined by the number. The 
message start 1024 indicates normal tempo. If the number is 512, follow plays the 
sequence at half the original recorded speed, start 2048 plays it back at twice the 
original speed, and so on.

follow The follow message is the main feature that distinguishes follow from seq. In effect, 
follow is like a score reader, comparing a live performance with the one previously 
stored.

The word follow, and a number, causes follow to begin comparing incoming num-
bers to its own stored numbers, beginning at the specified index (the specified 
event in its own stored sequence). When follow is following, and a number is 
received that matches the number recorded in follow, it sends out the index of that 
number.

The follow object is a forgiving score reader, and will try to follow along even if the 
incoming numbers do not exactly match the recorded sequence. If a number 
arrives that does not match the next number, or either of the two subsequent 
numbers in the sequence, follow does nothing. If a number arrives that matches a 
number up to two notes ahead in the sequence, follow assumes that the performer 
simply missed a note or two, and jumps ahead to the matched number.

stop Stops follow from recording, playing, or following. A stop message need not be 
received before switching directly from recording to playing, following to record-
ing, etc.

next Causes follow to send out the index and the stored number it is currently trying to 
match, and move on to the next number.

append Starts recording at the end of the stored sequence, without erasing the existing 
sequence.

int When follow is recording, the numbers received in its inlet are recorded as a 
sequence. The numbers may be bytes of MIDI messages (from midiformat or 
midiin), exactly as with the seq object. However, follow differs from seq in its abil-
ity to record individual integers; with follow you can record notes as a single pitch 
value. Whether the performance is recorded as complete MIDI messages or just as 
note-on pitches, follow can effectively step through the note-on pitch numbers 
later, when following a performance.
143 



follow  Compare a live performance
to a recorded performance
When follow is following, numbers received in its inlet are compared to the num-
bers recorded in the sequence. When a number is received that matches the num-
ber in the sequence, follow sends out the index of that number.

float Converted to int.

delay The word delay, followed by a number, sets the onset time, in milliseconds, of the 
first event in the recorded sequence.

hook The word hook, followed by a float, multiplies all the event times in the stored 
sequence by that number. For example, if the number is 2.0, all event times will be 
doubled, and the sequence will play back twice as slowly. Multiplications can even 
be performed while the sequence is playing.

write Opens a standard Save As dialog box to save the follow sequence as a file.

read The word read with no arguments puts up a standard Open Document dialog box 
for choosing a sequence file to load into follow. If read is followed by a symbol file-
name argument, the named file is located and loaded into follow.

print Prints the first few events of the recorded sequence in the Max window.

dump Calls up the standard Open Document dialog box, so that a previously recorded 
sequence or standard MIDI file can be opened as text and displayed in a new 
Untitled text window. This in fact has no direct effect on the follow object, but 
does allow you to view or edit a sequence, save your changes in a file, then load the 
new file into follow with a read message.

Arguments
any symbol Optional. The argument is the name of a file containing a previously recorded 

sequence, to be read into follow automatically when the patch is loaded. 

Output
int Out left outlet: When follow is following, and the number received in the inlet 

matches the next number in the stored sequence (or one of the two numbers after 
that), the index of the matched number is sent out. The index of the next number 
is also sent out when a next message is received.

Out right outlet: When follow receives a bang or a start message, the recorded num-
bers are played back. When follow is following, and a next message is received, the 
next number in the recorded sequence is sent out.
 144



follow Compare a live performance
to a recorded performance
Examples

A note that matches the recorded note can trigger a 
process, or the notes can be stepped through

See Also

seq Sequencer for recording and playing MIDI
detonate Graphic score of note events
Tutorial 35 seq and follow
Sequencing Recording and playing back MIDI performances
145 



 146

forward  Send remote messages
to a variety of objects

Input
anything Sends any message to all receive objects which share the name currently referred 

to by forward.

send The word send, followed by the name of a receive object, sets the destination for 
any subsequent messages received by the forward object. This ability to change the 
destination of messages on the fly distinguishes forward from the send object.

Arguments
any symbol Optional. Sets the name for the receive object which will receive messages. This 

name can later be changed with the send message.

Output
anything There are no outlets. A message (other than send) received in the inlet of forward is 

sent out the outlet of each receive object of the same name, even if the receive is in 
another patch.

Examples

See Also

message Send any message
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
send Send messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive

Using forward to send messages 
to multiple objects at once

The same thing,
with two send objects

The message box can perform 
the same function



fpic Display a picture
from a graphics file
Input
(mouse) In an unlocked patcher, you can change the offset of the picture by holding down 

the Command and Shift keys and dragging on fpic; the current offset of the pic-
ture is shown in the Assistance portion of the patcher window as you drag.

autofit The word autofit, followed by a nonzero number, scales the graphic to fit in the 
bounding rectangle of the fpic object.

link The word link, followed by symbol which specifies a filename, it will check to see if 
the graphic has already been loaded by another fpic object. If the object has 
already been loaded into RAM, the fpic object will reference the image loaded ear-
lier, conserving memory resources.

matrix The word matrix, followed by nine floating point numbers, reloads the current file 
into RAM after performing a transformation matrix operation on the image. This 
transformation is the same one used for the mapping in QuickTime of points 
from one coordinate space (i.e, the original image) into another coordinate space 
(a scaled, rotated, or translated version of the original image).

The transform matrix operation consists of nine matrix elements

a b u

c d v

t_x t_y w

if u and v are 0., and w is 1., we have the following translation formula.

x’ = a*x + c*y + t_x;

y’ = b*x + d*y + t_y

The following formulas are used for scaling/rotation:

a=xscale*cos(θ)

b=yscale*sin(θ)

c=xscale*(-sin(θ))

d=yscale*cos(θ)

For more on the transformation matrix, consult the Apple QuickTime Developer 
documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/iqMovieToolbox.c.htm#18006

noscale The word noscale disables image scaling.
147



fpic Display a picture
from a graphics file
offset The word offset, followed by two numbers, specifies the number of pixels by which 
the left upper corner of the picture is to be offset horizontally and vertically from 
the left upper corner of the fpic box. By default the left upper corner of the picture 
is located at the left upper corner of fpic (that is, with an offset of 0,0). With suc-
cessive slightly different offset messages, a picture can be moved inside fpic, and 
fpic can window different portions of a large picture. (In order to give the appear-
ance of smooth transitions when moving an image, the old image is not erased 
when using the offset message. This may cause an undesired appearance if your 
picture contains a blank background that doesn’t cover up what’s beneath it.)

pict The word pict, followed by the name of a graphics file in Max’s search path, opens 
the file and displays the picture, replacing whatever picture was previously dis-
played. The fpic object accepts PICT files and, if QuickTime is installed, other pic-
ture file formats that are listed in the QuickTime appendix.

read The word read, followed by a symbol which specifies a filename, looks for a Quick-
Time graphic file with that name in Max’s file search path, and opens it if it exists, 
displaying it in a graphic window. If the filename contains any spaces or special 
characters, the name should be enclosed in single smart quotes (obtained by typ-
ing option-] and option-shift-]) or each special character should be preceded by 
a backslash (\). The word read by itself puts up a standard Open Document dialog 
box and displays the common graphics files supported by QuickTime.

readany The word readany, followed by a symbol which specifies a filename, functions in 
the same manner as the read message, except that the Open Document dialog box 
does not filter its display by the currently supported filetypes.

rect The word rect, followed by four numbers that specify the size of scaling rectangle 
to apply to fit the input image within, loads the graphics file from disc into RAM 
and displays it. The first two numbers specify the placement in the graphic win-
dow as offset values, and the second two numbers specify the width and height, in 
pixels, of the rectangle.

scalemode The word scalemode, followed by number in the range 0-3, sets the scaling mode 
used by the fpic object.

If the fpic object is set to scaling mode 0, no scaling is performed; the image is dis-
played as read into memory.

If the fpic object is set to scaling mode 1, scaling is performed using the Quick-
Time transformation matrix (see the matrix message for more information); the 
image will be scaled and rotated according to the current or default settings of the 
transformation matrix. The matrix variables can be changed using the fpic 
object’s Inspector or by using the matrix message.
148



fpic Display a picture
from a graphics file
If the fpic object is set to scaling mode 2, rectangular scaling is performed (see the 
rect message for more information). The image will be loaded and displayed 
according to the current or default settings of the rect message.

If the fpic object is set to scaling mode 3, the image is autosized; the fpic object 
scales the graphic to fit in the window currently displayed.

storage The word storage, followed by two numbers which specify horizontal and vertical 
distances in pixels, will load only a portion of the graphic image into RAM, which 
can be used to conserve memory resources. 

Note: if either of the arguments are 0, fpic will not limit its storage.

time The word time, followed by a number which specifies a time in QuickTime time 
units, loads an individual frame from a QuickTime movie and displays it. Typi-
cally, QuickTime movies display at a rate of 600 units/second. The default is 0 
(i.e., frame one).

Inspector
The behavior of a fpic object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any fpic object displays the fpic Inspector in 
the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The fpic Inspector lets you set the following attributes:

Picture Offset specifies the number of pixels by which the left upper corner of the 
picture is to be offset horizontally and vertically from the left upper corner of the 
fpic box. By default the left upper corner of the picture is located at the left upper 
corner of fpic (that is, with an offset of 0,0). This offset can be changed by entering 
new pixel values into the number boxes. The default is no offset (i.e. 0 horizontal, 
0 vertical).

Time Offset mode allows you to specify a frame offset in QuickTime time units 
and load an individual frame of a movie as a graphic. The default is 0 (i.e., frame 
one). 

The Scaling Mode pop-up menu can be used to select the type of scaling used by 
the fpic object. There are four scaling modes available: The None option (the 
default) performs no image scaling. Choosing the Matrix option will open a 
patcher window and let you input matrix values for image scaling and rotation. If 
you have not previously specified matrix values, the defaults will be used. The 
Rectangular option also brings up a patcher window which lets you specify the 
position of the rectangle within the graphic window, in relative coordinates, and 
149



fpic Display a picture
from a graphics file
the width and height, in pixels, of the rectangle (the default values are all set to 0). 
The Auto-Fit option will automatically scale the image to fit the display area.

Internal Storage can be used to conserve RAM by only loading a portion of the 
graphic file into RAM. The area is specified by horizontal and vertical pixel val-
ues. Note: if either value is entered as 0, fpic will not limit its storage.

The Picture File option lets you choose a picture file for the fpic object to display by 
clicking on the Open button. The current file’s name appears in the text box to the 
left of the button. You can also choose a file by typing its name in this box, or by 
dragging a file icon from the Finder into this box.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
(Get Info…) After placing an fpic object in a patcher window, while it is still selected, choose 

the Get Info… command from the Object menu. This brings up the Inspector 
window for the fpic object, where you can choose a graphics file to display inside 
the fpic object’s box. The picture appears at 100% size, and the fpic object’s box 
may then be resized manually to accommodate it. The lower right part of the pic-
ture will be cropped by an fpic box which is smaller than the size of the picture.

The fpic object is simply for displaying pictures in patcher windows. The same 
visual effect can be achieved by choosing the Paste Picture command from the 
Edit menu, but that includes the picture in the patcher file, often making the file 
slow to save and load. Instead, fpic just references the graphics file on disk. 
Another advantage of using the fpic object is that it may reduce disk space and 
memory usage, since the same picture file may be referenced in many patcher 
windows, rather than being saved in each one. The external graphics file must be 
in Max’s search path, however, in order to be automatically displayed the next 
time the patch is opened.

Output
None.
150



fpic Display a picture
from a graphics file
Examples

Make a slide show by changing pictures, or move a picture by changing its offset

See Also

imovie Play a QuickTime movie in a patcher window
lcd Draw graphics in a patcher window
matrixcrtrl Matrix-style switch control
panel Colored background area
pictctrl Picture-based control
pictslider Picture-based slider
ubutton Transparent button, sends a bang
Menus Explanation of commands

Place a picture in a patch
(for the sheer beauty of it)...

...or make it functional by placing
ubutton objects over it.
151



frame Draw framed rectangle
in a graphic window
Input
bang In left inlet: Draws a framed rectangle using the current screen coordinates, draw-

ing mode, and color.

int In left inlet: Sets the left screen coordinate of the rectangle and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the rectangle.

In 3rd inlet: Sets the right screen coordinate of the rectangle.

In 4th inlet: Sets the bottom screen coordinate of the rectangle.

In 5th inlet: Sets the drawing mode of the rectangle. (See the listing of drawing 
mode constants under oval.)

In 6th (right) inlet: Sets the palette index (color) of the frame according to the 
graphics window’s current palette. When the monitor is in black and white mode, 
any nonzero index is black, and 0 is white.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the 
RGB values for the color of the frame the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a frame 
object’s sprite priority in its graphics window. Objects with lower priority will 
draw behind those with a higher priority.

Arguments
any symbol Obligatory. The first argument to frame must be the name of a graphics window 

into which the rectangle will be drawn. The window need not exist at the time the 
frame object is created, but the rectangle will not be drawn until the name 
matches that of an existing and visible window.

int Optional. Sets the initial sprite priority of the frame. If no priority is specified, the 
default is 3.

 Output
(visual) When the frame object’s associated graphics window is visible, and a bang message 

or number is received in its left inlet, a shape is drawn in the window, and the 
object’s previously drawn rectangle (if any) is erased.

Examples
See examples under oval or rect. frame can be directly substituted for oval, rect, or 
ring.
Objects frame - 152



frame Draw framed rectangle
in a graphic window
See Also

graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
153 - frame Objects



 154

fromsymbol  Transform a symbol into
individual numbers or messages

Input
symbol The fromsymbol object accepts a symbol for input, and outputs a list of numbers 

or messages correspond to the “contents” of the symbol. The fromsymbol object is 
useful for parsing a text symbol composed of numbers, (e.g., ‘3.5 5 6.5 20’) or 
dividing a symbol up into individual messages.

Arguments
None.

Output
messages, lists, A list of numbers or messages which correspond to parsed contents of the original 

or numbers symbol.

Examples

See Also

sprintf Format a message of words and numbers
tosymbol Convert messages, numbers, or lists to a single symbol
zl Multi-purpose list processor



fswap Reverse the sequential order
of two decimal numbers
Input
float In left inlet: The number is sent out the right outlet, then the number in the right 

inlet is sent out the left outlet.

In right inlet: The number is stored to be sent out the left outlet when a number is 
received in the left inlet.

int If there is a float argument, the numbers are converted to float. If there is an int 
argument or no argument, the number received in the right inlet is stored as an 
int.

list In left inlet: The numbers are stored in fswap. The first number is sent out the 
right outlet, then the second number is sent out the left outlet.

bang In left inlet: Swaps and sends out the numbers currently stored in fswap.

Arguments
int or float Optional. Sets an initial value for the number which is to be sent out the left out-

let. If there is no argument, the initial value is 0. If there is an int argument or no 
argument, an int is sent out the left outlet. (The number sent out the right outlet is 
always a float.)

Output
int When a number is received in the left inlet, the number in each inlet is sent out the 

opposite outlet. If there is an int argument or no argument, an int is sent out the 
left outlet.

float The number sent out the right outlet is always a float. The number sent out the left 
outlet is a float only if there is a float argument.

Examples

Numbers are sent out in reverse order from the order in which they were received
155 



fswap  Reverse the sequential order
of two decimal numbers
See Also

pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
unpack Break a list up into individual messages
 156



funbuff Store x,y pairs
of numbers together
Input
list In left inlet: The first number is the x value, and the second number is the y value, 

of an x,y pair stored in funbuff. If the x value is the same as an x value already 
stored in funbuff, the previously stored pair is replaced by the new pair.

int In left inlet: The number is the x value of an x,y pair. If a y value has been received 
in the right inlet, the two numbers are stored together in funbuff. Otherwise, the x 
value causes the corresponding y value stored in funbuff to be sent out the left out-
let.

If there is no stored x value which matches the number received, funbuff uses the 
closest x value which is less than the number received, and sends out the corre-
sponding y value.

In right inlet: The number is a y value which will be paired with the next x value 
received in the left inlet, and stored in funbuff.

clear Erases the contents of funbuff.

embed The word embed, followed by a non-zero number, causes the funbuff data to be 
stored inside the patcher. The default setting is not to store the funbuff data inside 
the patcher.

goto The word goto, followed by a number, sets a pointer to the x value (index) speci-
fied by the number. A subsequent next message will return the y value at the speci-
fied x.

min Sends the minimum y value currently stored in the funbuff out the left outlet.

max Sends the maximum y value currently stored in the funbuff out the left outlet.

next Finds the x value pointed to by the pointer (or, if the pointer points to a number 
not yet stored as an x value, to the next greater x value), and sends the correspond-
ing y value out the left outlet. Also, funbuff calculates the difference between that x 
value and the value previously pointed to by the pointer, sends the difference out 
the middle outlet, and resets the goto pointer to the next greater x value.

write Calls up the standard Save As dialog box, so that the contents of funbuff can be 
saved as a separate file. If the word write is followed by a symbol, the contents of the 
funbuff are saved immediately in a file, using the symbol as the filename.

read Calls up the Open Document dialog box so that a file of x,y values can be read 
into funbuff. If the word read is followed by a symbol, Max looks for a file with that 
name (in the file search path) to load directly into the funbuff. The funbuff file for-
mat is described on the next page.
157 



funbuff  Store x,y pairs
of numbers together
bang In left inlet: Prints information in the Max window concerning the current status 
of funbuff’s contents: how many elements it contains, the minimum and maxi-
mum x and y values it contains, and its domain and range (the maximum minus 
the minimum, for the x and y axes respectively).

float In either inlet: Converted to int.

set In left inlet: The word set, followed by one or more space-separated pairs of num-
bers, stores each pair as x,y pair.

delete In left inlet: The word delete, followed by two numbers, looks for such an x,y pair 
in funbuff, and deletes it if it exists. If delete is followed by only one number, only 
the x value is sought, and deleted if it is present.

dump In left inlet: Sends all the stored pairs out the middle and left outlets in immediate 
succession. The y values are sent out the middle outlet, and the x values are sent 
out the left outlet, in alternation. The pairs are sent out in ascending order based 
on the x value.

interp In left inlet: The word interp, followed by a number, uses that number as an x value, 
measures its position between its two neighboring x values in the funbuff, and 
then sends—out the left outlet—the y value that holds a corresponding position 
between the two neighboring y values. If the received number is already the x 
value in a stored x,y pair, the corresponding y value is sent out. If the received 
number exceeds the minimum or maximum x values stored in funbuff, the y value 
that’s associated with the minimum or maximum x value is sent out. If the funbuff 
is empty, 0 is sent out.

Arguments
any symbol Optional. The argument specifies the name of a file to be read into funbuff when 

the patch is loaded. Changes to the contents of one funbuff will not affect the con-
tents of another funbuff object with the same name.

A file for funbuff can also be created using a text editor window, beginning the text 
with the word funbuff, followed by a list of space-separated numbers which specify 
alternating x and y values. A funbuff that has been saved as a file can be viewed and 
edited as text by choosing Open as Text… from the File menu. Numbers in the 
form of text can be pasted in from other sources such as the editing window of a 
capture object, or even from another program such as a word processor.

Output
int Out left outlet: When an x value is received in the left inlet, the corresponding y 

value is sent out. (Or, if there is no such x value yet stored in funbuff, the y value 
corresponding to the next lesser x value is sent out.) When the word next is 
received in the left inlet, funbuff sends out the y value that corresponds to the x 
 158



funbuff Store x,y pairs
of numbers together
value pointed to by its pointer (or, if there is no such x value, the y value of the next 
greater x value).

Out middle outlet: When the word next is received in its left inlet, funbuff sends 
out the difference between the x value pointed to by its pointer, and the x value 
previously pointed to, then resets the pointer to the next x value.

bang Out right outlet: When the pointer reaches the end of a funbuff, no numbers are 
sent out in response to a next message, but a bang is sent out to notify that the end 
has been reached.

Examples

Pairs or lists are stored as x,y pairs; an x value alone, or next, sends out a y value

Interpolating between points stored in funbuff

See Also

coll Store and edit a collection of different messages
envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
line Output numbers in a ramp from one value to another
table Store and graphically edit an array of numbers
Tutorial 27 Your object
Timeline Graphically edit a score of Max messages

Store the pairs 0,0 and 10,100 and 30,200

funbuff

set 0 0 10 100 30 200

interp 18

140 is 40% of the way from 100 to 200, 
just as 18 is 40% of the way from 10 to 30

140

Compare 18 to its x value 
neighbors 10 and 30

Compare 18 to its x value 
neighbors 0 and 30

120 120 is 60% of the way from 0 to 200, 
just as 18 is 60% of the way from 0 to 30

interp 18

delete 10

funbuff

Delete the pair that has an x value of 10 (10,100)
159 



funnel  Tag data with a number
that identifies its inlet
Input
int In any inlet: The number of the inlet and the received number are sent out as a list.

float Converted to int.

list In any inlet: The number of the inlet is prepended to the list, and the new list is 
sent out. In a list floats are not converted to ints. The list may contain ints, floats, 
and symbols (provided that the first element of the list is not a symbol).

bang In any inlet: The number of the inlet and the stored (most recently received) 
number in that inlet are sent out as a two-item list.

Arguments
int Optional. The first arguments sets the number of inlets in the funnel. If there is no 

argument there will be two inlets. The second argument specifies an offset for the 
first inlet number. If no second argument is present, the inlets are numbered 
beginning with 0.

Output
list When a number or list is received in any inlet, funnel outputs a list consisting of 

the inlet number followed the input. funnel is designed for “funneling” many 
streams of numbers into the env or envi objects, but it can be useful in conjunc-
tion with other objects such as coll, funbuff and table.

Examples

Use funnel to tag incoming data, or to store data into a coll object
 160



funnel Tag data with a number
that identifies its inlet
See Also

env Script-configurable envelope editor
envi Script-configurable envelope in a patcher window
spray Distribute an integer to a numbered outlet
161 



gate  Pass the input out
a specific outlet
Input
int In left inlet: The number specifies an open outlet through which to pass all mes-

sages received in the right inlet. A number in the left inlet does not trigger any 
output itself.

float In left inlet: Converted to int.

bang In left inlet: Reports the current open outlet, or 0 if closed, out the left outlet. This 
message is designed to be used in conjunction with the grab object.

anything In right inlet: All messages are passed out the open outlet, which is specified by 
the number in the left inlet.

Arguments
int Optional. Specifies the number of outlets. Limited between 1 and 10. If there is no 

argument, there is only one outlet.

Output
anything Messages received in the right inlet are passed out the outlet specified by the num-

ber in the left inlet. If the number in the left inlet is 0, or if no outlet number has 
been received yet, all messages are ignored. If the number in the left inlet is less 
than 0, messages are sent out the leftmost outlet. If it is greater than the number of 
existing outlets, messages are sent out the rightmost outlet.
 162



gate Pass the input out
a specific outlet
Examples

See Also

Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
onebang Traffic control for bang messages
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Message is passed out the specified outlet This one closes the door behind itself
163 



gestalt  Inquire about
current system
Input
various The gestalt object accepts a symbol specifying a Mac OS Gestalt selector of up to 

four characters. Examples include sysv for system version and qtim for QuickTime 
version. For a complete list of Gestalt selectors refer to Apple developer documen-
tation. The object uses the Macintosh Gestalt feature to get a response to the 
selector. The response, and an error code, are reported out the object’s outlets.

Arguments
None.

Output
int Out left outlet If there was no error in obtaining the response to a selector to the 

object, the response is sent out the left outlet. Binary or hex display and/or the use 
of the bitwise and operator & may aid in interpreting the response.

Out right outlet: If there was an error in obtaining the response to a selector, an 
error code is sent out the right outlet. Refer to Apple developer documentation for 
a complete list of error codes. If the input selector was undefined, -1 is sent out. If 
there was no error, 0 is sent out.

Examples

gestalt can tell you information about the system in use, plus information about hardware features
 164



gestalt Inquire about
current system
See Also

screensize Output the monitor size
Inside Macintosh
165 



166

Ggate Pass the input out
one of two outlets

Input
int In left inlet: The number specifies which one of the two outlets is to be open. 0 

specifies the left outlet, any number other than 0 specifies the right outlet. The 
arrow on Ggate points to the open outlet.

bang In left inlet: Causes the arrow to point to the other outlet. Clicking on Ggate with 
the mouse has the same effect.

float In left inlet: Converted to int.

anything In right inlet: All messages are passed out the open outlet.

Arguments
None.

Output
anything Messages received in the right inlet are passed out one of the two outlets. If the 

number in the left inlet is 0, incoming messages are sent out the left outlet. If the 
number in the left inlet is not 0, messages are sent out the right outlet.

Examples

See Also

gate Pass the input out a specific outlet
Gswitch Receive the input in one of two inlets
onebang Traffic control for bang messages
pictctrl Picture-based control
route Selectively pass the input out a specific outlet
send Send messages without patch cords
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Specify one of two outlets Any comparison can be used as a criterion



grab Intercept the output
of another object
Input
anything The message is sent out the right outlet, or if a second argument is present the 

message is sent to receive objects named by the second argument.

set If a second argument has been typed into grab specifying the name of a receive 
object, then the word set, followed by a symbol, specifies the name of a (different) 
receive object via which grab can grab messages from remote objects.

Arguments
int Optional. The first argument sets the number of outlets, in addition to the right 

outlet. If there is no argument, grab has 1 additional outlet.

symbol Optional. If a symbol is present as a second argument, the message received in the 
inlet is sent to all receive objects named by the symbol, instead of being sent out 
the right outlet. In this case the rightmost outlet, which would normally send out 
the incoming message if no second argument were present, will not exist.

Output
anything Out right outlet: The right outlet should be connected only to the leftmost inlet of 

other objects. The message received in the inlet is sent out to the left inlet of all 
objects connected to the right outlet. Whatever goes out their outlets, however, is 
then intercepted by grab.

Out other outlets: Whatever would normally be sent out the outlets of the objects 
connected to the right outlet, is sent out grab’s outlets instead, in response to a 
message from grab. Whatever would be sent out the leftmost outlet of the other 
objects is sent out the leftmost outlet of grab, and so on. Note: Only the output 
that is sent out the outlets of other objects can be intercepted by grab. Other types 
of output, such as transmission of MIDI messages or printing in the Max window, 
cannot be intercepted by grab. Also, grab does not intercept the output of timing 
objects such as seq, metro, and clocker.

Connecting the right outlet of grab to the inlet of a patcher object, however, will 
not grab the output of the subpatch. It will simply grab the output of the inlet 
object inside the subpatch, which is exactly the same as its input. However, grab 
can communicate with remote objects via a receive object named as the second 
argument to grab.

If a second argument is present, the message received in the inlet is sent directly to 
receive objects named by the argument instead of being sent out the right outlet. 
Any such receive objects should be connected only to the leftmost inlet of other 
objects. The rightmost outlet, which would otherwise be used to grab the output 
of other objects, does not appear if the second argument is used.
167 



grab  Intercept the output
of another object
Note that if grab is connected to other objects remotely via numerous receive 
objects of the same name, the order in which grab communicates with those other 
objects is undefined, so the order in which their output will be sent out of the grab 
object’s other outlets is unpredictable.

Examples

Get an object’s output by “grabbing” it before it comes out the outlet

grab can communicate with any receive object specified by a set message

See Also

preset Store and recall the settings of other objects
table Store and graphically edit an array of number
 168



graphic Window for drawing
sprite-based graphics
Input
open Causes the graphics window associated with the graphic object to become visible. 

The window is also brought to the front. Double-clicking on the graphic object in 
a locked patcher has the same effect.

wclose Causes the window associated with the graphic object to become invisible.

Arguments
symbol Optional. Identifies the graphic object’s window. Drawing and animation objects 

use this symbol to tell Max which window to draw in. If no argument is typed in, 
the window will be named Graphics—1 (and subsequent graphics windows will 
be numbered sequentially).

int Optional. Following the name of the graphic object, four coordinates can be spec-
ified for the location of the window on the screen. The numbers represent the 
screen coordinates of the left, top, right, and bottom corners (respectively) of the 
drawing area. Note that when you save a patch containing a graphic object with no 
coordinate arguments, the current window location is saved. The coordinate 
arguments are useful in the case where you want the object’s window to be guar-
anteed to appear in a certain position each time the patch is opened, regardless of 
where it may have been dragged in the past.

Optional. Following the name of the graphic object, but preceding the four coor-
dinate arguments, a fifth non-zero number argument may be inserted, which will 
cause the graphics window’s title bar to be hidden. A graphics window without a 
title bar can still be dragged by command-clicking on it.

Output
None. Other objects draw into a graphic object’s window.

Examples

The graphic object creates a window for the output of graphics objects. The window can be
resized by dragging in the lower right corner where you’d expect the grow box to be.
169 



graphic  Window for drawing
sprite-based graphics
See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
pics Animation in a graphic window
pict Draw picture in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
Tutorial 42 Graphics
 170



Gswitch Receive the input in
one of two inlets

171

Input
int In left inlet: The number specifies which one of the other two inlets is to be open. 

0 specifies the middle inlet, any number other than 0 specifies the right inlet. The 
arrow on Gswitch points to the open inlet.

bang Causes the arrow to point to the other inlet. Clicking on Gswitch with the mouse 
has the same effect.

float In left inlet: Converted to int.

anything In middle or right inlet: Messages received in the open inlet are passed out the 
outlet, while messages received in the other inlet are ignored.

Arguments
None.

Output
anything If the number in the left inlet is 0, all messages received in the middle inlet are 

passed out the outlet, and messages received in the right inlet are ignored. If the 
number in the left inlet is not 0, messages received in the middle inlet are ignored, 
and all messages received in the right inlet are passed out the outlet.

Examples

See Also

gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
pictctrl Picture-based control
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
switch Output messages from a specific inlet
Tutorial 17 Gates and switches

Specify one of two inlets Any comparison can be used as a criterion



hint Pop-up style
hint text
Input
(mouse) When the cursor moves within the hint object’s rectangle, its text message will 

appear in a colored area beneath the rectangle after the specified delay.

(Font menu) The appearance of the hint object can be altered by selecting it and choosing a dif-
ferent font or size from the Font menu.

delay The word delay, followed by a number, sets the delay in milliseconds until the hint 
appears. The default is 1000 (i.e., one second).

interval The word interval, followed by a number, sets the interval in milliseconds at which 
the mouse position is checked. The default is 100.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values 
for the background color of the hint object. The default value is white (brgb 255 255 
255).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values 
for the text displayed by the hint object. The default value is black (brgb 0 0 0).

set The word set, followed by any message, will replace the message stored in hint. 
This message will be displayed when the mouse is positioned over the hint object 
after an interval of time specified by the delay message.

updatemode The word updatemode, followed by a zero or one, toggles update mode of the hint 
object. Enabling update mode (updatemode 1) means that anything in the patcher 
window which is underneath the hint will be erased and redrawn. This mode 
should be used if the hint message will appear, in an area over something which 
could change its appearance while the hint is visible (i.e., a number box or a 
slider). An updatemode 0 message will restore the screen to what was underneath 
the hint when it was first drawn. The default is on (1).

Inspector
The behavior of a hint object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any hint object displays the hint Inspector in 
the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The hint Inspector lets you set the following attributes:

Type the text you want displayed when the mouse is positioned over the area 
bounded by the hint object into the Set Hint Text box.

The Pop-up Delay lets you set the delay in milliseconds until the hint appears. The 
default is 1000 (one second).
172



hint Pop-up style
hint text
Check Interval sets the interval in milliseconds at which the mouse position is 
checked. The default is 100.

If the Redraw Behind Hint checkbox is checked, anything in the patcher window 
which is underneath the hint will be erased and redrawn. This mode should be 
used if the hint message will appear, in an area over something which could 
change its appearance while the hint is visible (i.e., a number box or a slider). The 
default is on (checked).

The Color option lets you use a swatch color picker or RGB values used to display 
the hint message and its background. Message sets the color for the message dis-
played (default 0 0 0), Background sets the color for the message area in which the 
hint appears (default 221 221 221).

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
message The message stored in the hint object.

Examples

Provide optional hints to UI objects
173



hint Pop-up style
hint text
See Also

comment Explanatory note or label
umenu Pop-up menu, to display and send commands
174



Histo Make a histogram of
the numbers received
Input
int In left inlet: Histo keeps count of how many times it has received a number 

between 0 and 127 in the left inlet. When a number is received, Histo includes it in 
the count, sends the number of times that number has been received out the right 
outlet, and passes the number itself out the left outlet. Numbers outside the range 
0-127 are ignored.

In right inlet: Has the same effect as a number in the left inlet, except that the 
number is not counted by Histo.

clear Erases the memory of Histo, to begin a new histogram.

bang In left inlet: Using the number most recently received in the left inlet, Histo reports 
out the right outlet how many times that number has been received, and sends the 
number itself out the left outlet. If no number has been previously received in the 
left inlet, 0 is sent out both outlets.

Arguments
None.

Output
int Out left outlet: The number received in the inlet.

Out right outlet: The count of the number of times that number has been 
received. 

Examples

Store a histogram of the numbers received; display it in a table
175 



Histo  Make a histogram of
the numbers received
See Also

anal Make a histogram of number pairs received
prob Make weighted random series of numbers
table Store and graphically edit an array of numbers
Tutorial 33 Probability tables
Quantile Using table for probability distribution
 176



hslider Output numbers by
moving a slider onscreen
Input
int The number received in the inlet is displayed graphically by hslider, and is passed 

out the outlet. Optionally, hslider can multiply the number by some amount and 
add an offset to it, before sending the number out its outlet.

The hslider will also send out numbers in response to mouse clicking or dragging. 

float Converted to int.

bang Sends out the number currently stored in hslider.

color The word color, followed by a number from 0 to 15, sets the color of the center por-
tion of the hslider to one of the object colors which are also available via the Color 
command in the Object menu.

local The word local, followed by a non-zero number, enables object response to mouse 
clicks (the default). The message local 0 disables the object’s response to the 
mouse; the hslider object will respond only to input in its inlet and ignore all 
mouse clicks.

min The word min, followed by a number, sets value that will be added to the hslider 
object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The hslider 
object’s value will be multiplied by this number before it is sent out the outlet. The 
multiplication happens before the addition of the Offset value. The default value 
is 1.

resolution The word resolution, followed by a number, sets the sampling interval in millisec-
onds. This controls the rate at which the display is updated as well as the rate that 
numbers are sent out the hslider object’s outlet.

set The word set, followed by a number, resets the value displayed by hslider, without 
triggering output.

size The word size, followed by a number, sets the range of the hslider object. The 
default value is 128. Setting the size to 1 disables the hslider visually (since it can 
only display one value). Any specified size less than 1 will be set to 2.

Inspector
The behavior of an hslider object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any hslider object displays the 
hslider Inspector in the floating window. Selecting an object and choosing Get 
Info… from the Object menu or also displays the Inspector.
177



hslider Output numbers by
moving a slider onscreen
The hslider Inspector lets you enter a Slider Range value. Numbers received in the 
inlet are automatically limited between 0 and the number 1 less than the specified 
range value. The default range value is 128. You can specify an Offset value which 
will be added to the number, after multiplication. The default offset value is 0. The 
hslider Inspector also lets you specify a Multiplier. The hslider object’s value will be 
multiplied by this number before it is sent out the outlet. The multiplication hap-
pens before the addition of the Offset value. The default multiplier value is 1.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int Numbers received in the inlet, or produced by clicking or dragging on hslider with 

the mouse, are first multiplied by the multiplier, then have the offset added to 
them, then are sent out the outlet.

Examples

See Also

kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Produce output by dragging onscreen... or use to display numbers passing through
178



if Conditional statement in
if/then/else form
Input
int The number in each inlet will be stored in place of the $i or $f argument associated 

with it. (Example: The number in the second inlet from the left will be stored in 
place of the $i2 and $f2 arguments, wherever they appear.)

float The number in each inlet will be stored in place of the $f or $i argument associated 
with it. The number will be truncated by a $i argument.

symbol In left inlet: The word symbol, followed by a symbol (a word), will be stored in 
place of the $s1 argument.

bang In left inlet: Evaluates the conditional statement using the values currently stored.

Any of the above messages in the left inlet will evaluate the conditional statement 
and send out the result. Any inlets which have not yet received a value have the 
value 0 by default.

The number of inlets is determined by how many different changeable arguments 
are typed in. The maximum number of inlets is 9.

list In left inlet: The items of the list are treated as if each had come in a different inlet, 
and the conditional statement is evaluated. If the list contains fewer items than 
there are inlets, the most recently received value in each remaining inlet is used.

set In left inlet: The word set, followed by one or more numbers, treats those numbers 
as if each had come in a different inlet, replacing the stored value with the new 
value, but the conditional statement is not evaluated and nothing is sent out the 
outlet. If there are fewer numbers in the message than there are inlets, the stored 
value in each remaining inlet is left unchanged.

Arguments
Obligatory. The arguments for the if object start with a conditional statement that 
uses the same syntax as expr. Refer to the description of the expr object for details. 
The word then follows the conditional statement, which is then followed by a mes-
sage expression described below. After the message expression, there is an 
optional else and a second message expression.

if evaluates the conditional expression, and if the result is non-zero, evaluates the 
message expression after the word then. Otherwise, it evaluates the second mes-
sage expression after the word else (or does nothing in the case where no else and 
second message expression have been typed in.

then, else Message expressions are similar to what you type into a message box, with the fol-
lowing differences:

$i1,$f1,$s1 You use $i1, $f1, or $s1 instead of $1 for changeable arguments.
179 



if  Conditional statement in
if/then/else form
send No commas or semicolons are allowed. Messages can be sent to remote receive 
objects by preceding the message expression with send, followed by the name of 
the receive object.

out2 The keyword out2 in a message expression creates a second, right outlet for the if 
object. If out2 precedes a message expression, the result of the expression is sent 
out the right outlet instead of the left outlet.

Output
anything The message after the then or else portion of the arguments is sent out the outlet. If 

the word out2 is present as an argument, there will be two outlets, and messages 
following out2 will be sent out the right outlet. If the word send is present as an 
argument, the word that follows it is the name of a receive object, and the message 
that follows it will be sent to receive objects with that name.

Examples

Complex comparisons and results can be described in a single object

See Also

!= Compare two numbers, output 1 if they are not equal
< Is less than, comparison of two numbers
<= Is less than or equal to, comparison of two numbers
== Compare two numbers, output 1 if they are equal
> Is greater than, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
expr Evaluate a mathematical expression
select Select certain inputs, pass the rest on
Tutorial 38 expr and if
 180



imovie Play a QuickTime movie
in a patcher window
Input
(see movie) All messages recognized by the movie object are similarly recognized by imovie.

border The object is initially shown with a black line border drawn around its movie. The 
message border 0 erases the black line border; border 1 redraws the border.

Arguments
(Get Info…) Optional. Selecting the object (when the patcher window is unlocked) and 

choosing the Get Info… command from the Object menu opens a standard file 
dialog, allowing you to select a QuickTime movie to be read into the object auto-
matically when the patch is loaded. The movie must be located in Max’s file search 
path (specified with the File Preferences… command in the Options menu) in 
order for imovie to find it automatically.

Output
int Out left outlet: The end time of the movie is sent out in response to the length mes-

sage; the current time in the movie is sent out in response to the time message; 0 is 
sent out in response to the start message.

Out middle outlet: The horizontal position of the mouse, relative to the left edge 
of the movie, is sent out when the mouse is clicked or dragged inside the movie.

Out right outlet: The vertical position of the mouse, relative to the top edge of the 
movie, is sent out when the mouse is clicked or dragged inside the movie.

Examples

A movie can be displayed within a patch, and mouse motion can be detected within it
181



imovie Play a QuickTime movie
in a patcher window
See Also

lcd Draw graphics in a patcher window
movie Play a QuickTime movie in a window
playbar QuickTime movie play controller
182



IncDec Buttons that
increment/decrementa value

183

Input
int A number sent to the IncDec object’s inlet sets the value that will be incremented or 

decremented by clicking on the top or bottom of half of the object. The number is 
not sent out the outlet. IncDec is designed to be used with user interface objects 
such as the number box, dial, and the various sliders.

(mouse) A mouse click increments or decrements the stored value (depending on which 
arrow is clicked) and sends it out the outlet.

(Font menu) The height of an IncDec object can be altered by selecting it and choosing a differ-
ent font or size from the Font menu.

Arguments
None.

Output
int When you click on the top half of an IncDec object, it sends out a value that is one 

greater than the last value received at its inlet or sent out its outlet, whichever hap-
pened most recently. Holding the mouse button down continues to increment the 
output, gradually increasing in rate of output.

The same is true for the bottom half of IncDec, except that the values are decre-
mented.

Examples

IncDec works well in combination with number box and hslider

See Also

counter Count the bang messages received, output the count
number box Display and output a number
hslider Output numbers by moving a slider onscreen
umenu Pop-up menu, to display and send commands
uslider Output numbers by moving a slider onscreen



inlet Receive messages from
outside a patcher
Input
(patcher) Each inlet object in a patcher will show up as an inlet at the top of an object box 

when the patch is used inside another patcher (as an object or a subpatch). Mes-
sages sent into such an inlet will be received by the inlet object in the subpatch.

Inspector
A descriptive Assistance message can be assigned to an inlet object and can be 
edited using its Inspector. If you have enabled the floating inspector by choosing 
Show Floating Inspector from the Windows menu, selecting any inlet object dis-
plays the inlet Inspector in the floating window. Selecting an object and choosing 
Get Info… from the Object menu or also displays the Inspector.

Typing in the Describe Outlet text area specifies the content of the Assistance mes-
sage.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
anything In a subpatch inlet sends out whatever messages it receives through patch cords 

from the patch that contains it.
184



inlet Receive messages from
outside a patcher
Examples

See Also

bpatcher Embed a visible subpatch inside a box
outlet Send messages out of a patcher
pcontrol Open and close subwindows within a patcher
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 26 The patcher object

Inlets of the subpatch... correspond to the inlet objects in the subpatch
185



int / i  Store an
integer value
Input
int In left inlet: The number replaces the currently stored value and is sent out the 

outlet.

In right inlet: The number replaces the stored value without triggering output. 

float Converted to int.

bang In left inlet: Sends the stored value out the outlet.

set In left inlet: The word set, followed by a number, replaces the stored value without 
triggering output.

send In left inlet: The word send, followed by the name of a receive object, sends the 
value stored in int to all receive objects with that name, without sending it out the 
outlet of the int.

Arguments
int Optional. Sets an initial value to be stored in int. If there is no argument, the initial 

value is 0. An int argument by itself, without the word int, is another way of creat-
ing and initializing an int object.

float Converted to int.

Output
int A number is stored in (and output from) int as a long (32-bit) integer. 
 186



int / i Store an
integer value
Examples

See Also

float Store a decimal number
pv Share variables specific to a patch and its subpatches
value Share a stored message with other objects
Tutorial 21 Storing numbers

Output the stored 
value

Replace the stored value                      
and output it

Initial value is given
187 



 188

iter  Break a list up into
a series of numbers

Input
list The numbers in the list are sent out the outlet in sequential order.

int or float The number is sent out the outlet.

bang Sends the number or list most recently received, in sequential order.

Arguments
None.

Output
int The numbers received in the inlet are sent out one at a time.

Examples

Numbers in a list pass through iter one at a time

See Also

cycle Send a stream of data to individual outlets
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages
zl Multi-purpose list processor
Tutorial 30 Number groups



key Report key presses
on the computer keyboard
Input
(keyboard) The input to key comes directly from the computer keyboard. There are no inlets.

Arguments
None.

Output
int Output is sent each time a key is depressed on the computer keyboard. (Holding 

the key down does not produce repeated output.)

Out left outlet: The ASCII value of the typed key.

Out middle outlet: The key code of the typed key. 

Out right outlet: The output values can be sent through the & object to create tog-
gles set by each modifier key. The numerical output of the right outlet is listed 
below along with the argument to the & object that will create a toggle.: 

Modifier Key Output Toggle
no Modifier key 128 N/A
Shift 640 & 512
Caps Lock (on) 1152 & 1024
Option 2176 & 2048
Control 4224 & 4096

Note: The command key is never reported to the key object because it is used for 
menu shortcuts (Copy, Paste, Save, etc.).

Examples

Keys typed on the computer keyboard can be used to trigger messages
189 



key  Report key presses
on the computer keyboard
See Also

keyup Report key releases on the computer keyboard 
numkey Interpret numbers typed on the computer keyboard
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
Tutorial 20 Using the computer keyboard
 190



keyup Report key releases on the
computer keyboard
Input
(keyboard) The input to keyup comes directly from the computer keyboard. There are no 

inlets.

Arguments
None.

Output
int Output is sent each time a key is released on the computer keyboard. (Nothing is 

sent when the key is first depressed.) 

Out left outlet: The ASCII value of the typed key.

Out right outlet: The key code of the typed key. 

Out right outlet: The output values can be sent through the & object to create tog-
gles set by each modifier key. The numerical output of the right outlet is listed 
below along with the argument to the & object that will create a toggle.: 

Modifier Key Output Toggle
no Modifier key 128 N/A
Shift 640 & 512
Caps Lock (on) 1152 & 1024
Option 2176 & 2048
Control 4224 & 4096

Note: The command key is never reported to the keyup object because it is used 
for menu shortcuts (Copy, Paste, Save, etc.).
191 



keyup  Report key releases on the
computer keyboard
Examples

See Also

key Report key presses on the computer keyboard 
MouseState Report the status and location of the mouse
numkey Interpret numbers typed on the computer keyboard
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
Tutorial 20 Using the computer keyboard

ASCII value is sent when key is 
released

Used with key to measure how long a key is down
 192



kslider Output numbers from
a keyboard onscreen
Input
int In left inlet: The number received in the inlet is displayed graphically by kslider if it 

falls within its displayed range. The current velocity value (from 1 to 127) that 
kslider holds is sent out its right outlet, followed by the received number out the 
left outlet.

In right inlet: The number received in the right inlet sets the output key velocity 
without triggering output.

(mouse) kslider also sends out numbers when you click or drag on it with the mouse. The 
velocity value is determined by the vertical position of the mouse within each key. 
Higher vertical positions produce higher velocities, to a maximum of 127.

If the kslider object is in polyphonic mode, you need to click on a key twice: once 
to send a note-on, and once again for a note-off.

Clicking on the very rightmost edge of the kslider sends out the note of the key C 
that would be just to the right of the keys that are visible.

float Converted to int.

bang In left inlet: Sends out the pitch and velocity values currently stored in kslider.

clear In left inlet: The clear message will clear any currently highlighted notes on the 
keyboard, but will not trigger any output.

color In left inlet: The word color, followed by a number from 0 to 15, sets the color of 
the keyboard that is highlighted to one of the object colors that are also available 
with the Color submenu of the Object menu.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the 
RGB values for the color of the part of the keyboard that is highlighted (default 
128 128 128).

mode In left inlet: The word mode, followed by a 0 or 1, selects monophonic or poly-
phonic operation for the kslider. mode 0 (default) sets monophonic mode. Only 
one key can be selected and displayed at one time. mode 1 sets the kslider to poly-
phonic mode. In polyphonic mode, kslider keeps track of note-ons and note-offs, 
so it mirrors which notes are currently held down on your MIDI keyboard. A key 
is “turned off ” by sending the kslider object a key on message with a velocity of 0.

offset In left inlet: The word offset, followed by a number, sets an offset value in octaves 
for the kslider object. The default kslider keyboard outputs notes from the lowest 
octave of the MIDI keyboard range (c-2). The message offset 5 would mean that 
the kslider object’s leftmost key would be C3. The default is 3.
193



kslider Output numbers from
a keyboard onscreen
range In left inlet: The word range, followed by a number, sets the range of the kslider 
object in octaves. The default value is 4.

set In left inlet: The word set, followed by a number, changes the value displayed by 
kslider, without triggering output.

size In left inlet: The word size, followed by a 0 or 1, sets the size of the keyboard dis-
play. size 0 (default) sets the large keyboard, and key 0 selects the small keyboard. 

Inspector
The behavior of a kslider object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any kslider object displays the kslider Inspec-
tor in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The kslider Inspector lets you enter a Slider Range value (default 4) that sets the 
range of the kslider object in octaves. An Offset value (default 3) specifies the 
number of octaves the lowest note on the displayed keyboard will from C-2 (the 
lowest MIDI C). the Keyboard Size buttons select the size of the keyboard, and the 
Keyboard Mode buttons select monophonic or polyphonic modes. The Color 
option lets you use a swatch color picker or RGB values to specify the color of the 
highlighted portion of the keyboard. The default color is 128 128 128.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int kslider sends its current velocity value out its right inlet, followed by the (display-

able) pitch value out its left outlet, when a number is received in its inlet or you 
click or drag on the object.
194



kslider Output numbers from
a keyboard onscreen
Examples

See Also

hslider Output numbers by moving a slider onscreen
makenote Generate a note-off message following each note-on
notein Output received MIDI note messages
noteout Transmit MIDI note messages
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials

Produce output by clicking on the keyboard... or use to display incoming pitches 
195



lcd Draw graphics
in a Patcher window
In Max 4.0 and later, all lcd object drawing commands are now lower case. For backwards compat-
ibility, old style capitalized message names are still understood; you can use either lineto or LineTo.

Input
(mouse) You can draw freehand in lcd with the mouse (provided this feature has not been 

turned off with a local 0 message). The mouse will draw with the current pen and 
color characteristics, and the mouse location will be sent out the outlet.

ascii The word ascii, followed by a number between 0 and 255, writes the character cor-
responding to that ASCII value at the current pen position, then moves the pen 
position to the right of that character. Numbers that exceed the 0-255 range are 
restricted to that range with a modulus operation.

border border 1 sets lcd to draw a border around its window, which is on by default. A mes-
sage of border 0 turns this feature off.

brgb The word brgb, followed by three numbers between 0 and 255, specify an RGB 
value sets the current background color of the lcd object.

clear Erases the contents of lcd.

clearpicts Deletes all of an lcd object’s named pictures.

clearregions Deletes all of an lcd object’s named regions.

clearsprites Deletes all of an lcd object’s named sprites.

clipoval followed by four int arguments specifying the left, top, right, and bottom extrem-
ities of an oval, clips drawing commands to the oval. These extremities are speci-
fied in pixels, relative to the top left corner of the lcd display area.

clippoly The word clippoly may be followed by as many as 254 int arguments that would 
specify a series of x/y pairs that define a polygon to which lcd will clip drawing 
commands. These x/y pairs are specified in pixels, relative to the top left corner of 
the lcd display area.

cliprect The word cliprect, followed by four int arguments specifying the left, top, right, 
and bottom positions of a rectangle, clips lcd drawing commands to the rectangle. 
These edge positions are specified in pixels, relative to the top left corner of the lcd 
display area.

cliprgn The word cliprgn, followed by a symbol, clips drawing commands with the named 
region.

cliproundrect he word cliproundrect, followed by six int arguments specifying the left, top, right, 
and bottom positions of a rectangle and the amount of horizontal and vertical 
roundness in pixels, clips drawing commands to a rounded rectangle. The edge 
196



lcd Draw graphics
in a Patcher window
positions are specified in pixels, relative to the top left corner of the lcd display 
area.

closeregion The word closeregion, followed by a symbol argument that names the region, turns 
off region definition and associates the defined region with the symbol. After the 
closeregion message, drawing commands function normally again.

closesprite The word closesprite, followed by a symbol argument that names the sprite, turns 
off sprite command collection and associates the defined region with the symbol. 
After the closesprite message, drawing commands function normally again.

color The word color, followed by a number from 0 to 255, specifies a color (from Max's 
color palette) for subsequent graphics drawn in lcd. Numbers that exceed the 0-
255 range are restricted to that range with a modulus operation.

deletepict The word deletepict, followed by a symbol, deletes the named picture.

deleteregion The word deleteregion, followed by a symbol, deletes the named region.

deletesprite The word deletesprite, followed by a symbol, deletes the named sprite.

drawpict The word drawpict, followed by a symbol, draws the named picture. Optionally 
there may follow four numbers specifying a destination rectangle in which the 
picture is scaled and drawn, and source rectangle that specifies the area of the pic-
ture to use in the operation. These rectangles are specified as left, top, width, and 
height values in pixels. The destination rectangle is relative to the top left corner of 
the lcd display area. The source rectangle is relative to the top, left corner of the 
picture. If not present, these rectangles are both set to be the same size as the pic-
ture.

drawsprite The word drawsprite, followed by a symbol, draws the named sprite. Optionally 
this may be followed by a pair of numbers that specify a horizontal and vertical 
offset for drawing the sprite.

enablesprites enablesprites 1 turns on the drawing of sprites. The message enablesprites 0 turns this 
feature off (the default). When sprites are enabled, lcd consumes more memory.

font The word font, followed by two numbers, specifies a font ID and a font size to be 
used when drawing text in response to a write or ascii message. Note that most font 
ID numbers depend on what fonts are present in the Fonts folder in the System 
Folder, so the effect of a font message may vary from one computer to another.

framearc Same as paintarc except that only the unfilled outline of the arc is drawn.

frameoval Same as paintoval except that only the unfilled outline of the oval is drawn.

framepoly Same as paintpoly except that only the unfilled outline of the polygon is drawn.
197



lcd Draw graphics
in a Patcher window
framerect Same as paintrect except that only the unfilled outline of the rectangle is drawn.

framergn Same as the paintrgn message except that only the unfilled outline of the region is 
drawn.

frameroundrect Same as paintroundrect except that only the unfilled outline of the rounded rectan-
gle is drawn.

frgb The word frgb, followed by three numbers between 0 and 255, specify an RGB 
value sets the current foreground color of the lcd object.

getpenloc The word getpenloc outputs a message consisting of the word penloc followed by 
two numbers, out the lcd object’s right outlet. The numbers represent local coor-
dinates relative to the top-left corner of the lcd display area. The first number is the 
number of pixels to the right of that corner, and the second number is the number 
of pixels down from that corner.

getpixel The word getpixel, followed by two numbers which specify the location of a pixel 
in  local coordinates relative to the top-left corner of the lcd display area, outputs a 
message consisting of the word pixel followed by three numbers between 0 and 255 
out the lcd object’s right outlet. The numbers represent the RGB values of the pixel 
at the specified locatoni. If a pixel is out of range, the getpixel message will output 
pixel 0 0 0.

hidesprite Turns off the drawing of a named sprite in lcd.

idle idle 1 turns on the reporting of idle mouse position over an lcd object. The coordi-
nates of the mouse position are sent out the middle outlet as a two-item list as the 
mouse moves. The numbers represent local coordinates relative to the top-left 
corner of the lcd display area. The first number is the number of pixels to the right 
of that corner, and the second number is the number of pixels down from that 
corner. idle 0 turns off this feature, which is off by default.

line The word line, followed by two int arguments for horizontal and vertical offset, in 
pixels, relative to the current pen position, draws a line from the current pen posi-
tion to a point determined by the specified offset, and that point becomes the new 
pen position. Positive arguments draw the line to the right or down; negative 
arguments draw up or to the left.

linesegment The word linesegment, followed by four int arguments that specify the endpoints of 
a line segment, draw a line. The numbers represent the horizontal and vertical off-
set of the beginning endpoint, and the horizontal and vertical offset of the finish-
ing endpoint, in pixels, relative to the top left corner of the lcd display area. 
Optionally, a color may follow. If there is one additional int argument, the color 
specifies a color from Max's color palette in the same way as the color message. If 
there are three additional int arguments, the color specifies a color as an RGB 
value in the same way as the frgb message.
198



lcd Draw graphics
in a Patcher window
lineto The word lineto, followed by two int arguments for horizontal and vertical ending 
point, draws a line from the current pen position to the position specified by the 
arguments.

local local 0 turns off drawing in the lcd with the mouse; local 1 turns the feature back on. 
In either case, lcd will still report the location of the mouse as it is dragged within 
the object's rectangle.

move Moves the pen position a certain number of pixels down from, and to the right of, 
its current position. The word move must be followed by two int arguments for 
horizontal and vertical offset, in pixels, relative to the current pen position. Nega-
tive arguments may be used to move the pen position up or to the left.

moveto Sets the pen position at which the next graphic instruction will be drawn. The 
moveto message must include two int arguments for horizontal and vertical offset, 
in pixels, relative to the upper left corner of the lcd display area.

noclip Removes any clipping area that may be in place.

onscreen onscreen 1 turns on the memory-saving feature of using the onscreen window for 
drawing. A message of onscreen 0 turns this feature off. Onscreen mode is off by 
default. When not using onscreen mode, lcd consumes more memory, but 
remembers its contents so that it is not erased when covered as happens with the 
onscreen mode.

paintarc The word paintarc, followed by six int arguments that specify the left, top, right, 
and bottom extremities of an oval across which the arc will be drawn, and the 
start and end angle in degrees, paints an arc. The extremities are specified in pix-
els, relative to the top left corner of the lcd display area. Optionally, a color may 
follow. If there is one additional int argument, the color specifies a color from 
Max's color palette in the same way as the color message. If there are three addi-
tional int arguments, the color specifies a color as an RGB value in the same way 
as the frgb message.

paintoval The word paintoval, followed by four int arguments specifying the left, top, right, 
and bottom extremities of an oval, paints an oval. These extremities are specified 
in pixels, relative to the top left corner of the lcd display area. Optionally, a color 
may follow. If there is one additional int argument, the color specifies a color from 
Max's color palette in the same way as the color message. If there are three addi-
tional int arguments, the color specifies a color as an RGB value in the same way 
as the frgb message.

paintpoly The word paintpoly may be followed by as many as 254 int arguments that would 
specify a series of x/y pairs that define a polygon to be painted in lcd. These x/y 
pairs are specified in pixels, relative to the top left corner of the lcd display area. 
Optionally, a color may follow the last x/y pair that is the same as the first one. If 
there is one additional int argument, the color specifies a color from Max's color 
199



lcd Draw graphics
in a Patcher window
palette in the same way as the color message. If there are three additional int argu-
ments, the color specifies a color as an RGB value in the same way as the frgb mes-
sage.

paintrect The word paintrect, followed by four int arguments specifying the left, top, right, 
and bottom positions of a rectangle, paints a rectangle. The edge positions are 
specified in pixels, relative to the top left corner of the lcd display area. Optionally, 
a color may follow. If there is one additional int argument, the color specifies a 
color from Max's color palette in the same way as the color message. If there are 
three additional int arguments, the color specifies a color as an RGB value in the 
same way as the frgb message.

paintrgn The word paintrgn, followed by a symbol, paints the named region (filled). 
Optionally this may be followed by a pair of integer arguments which specify a 
horizontal and vertical offset to which the region's coordinates will be relative, 
and a color. If there is one additional int argument for the color, the color specifies 
a color from Max's color palette in the same way as the color message. If there are 
three additional int arguments, the color specifies a color as an RGB value in the 
same way as the frgb message.

paintroundrect The word paintroundrect, followed by six int arguments specifying the left, top, 
right, and bottom positions of a rectangle and the amount of horizontal and ver-
tical roundness in pixels, paints a rounded rectangle. The edge positions are spec-
ified in pixels, relative to the top left corner of the lcd display area. Optionally, a 
color may follow. If there is one additional int argument, the color specifies a color 
from Max's color palette in the same way as the color message. If there are three 
additional int arguments, the color specifies a color as an RGB value in the same 
way as the frgb message.

penmode The word penmode, followed by an int argument from 0 to 7, sets the transfer 
mode for subsequent drawing operations. Refer to QuickDraw documentation in 
Inside Macintosh for the effects of each drawing mode.

pensize The word pensize must be followed by an int argument to set the current pensize in 
pixels.

readpict The word readpict followed by a required picture name and filename arguments 
reads a picture file from disk into RAM. This named picture can then be drawn in 
lcd with the drawpict and tilepict messages. In response to the readpict message, the 
object sends a message out the right outlet of the lcd object consisting of the word 
pict followed by a symbol which specities the name of the picture file and two 
numbers which specify the file’s width and height. If the read is unsuccessful, the 
error message pict <pictname> error will be sent out the right outlet.

recordregion Initiates the recording of drawing commands which will be stored in a named 
region. While recording, drawing commands will have no visible effect on the 
contents of the lcd object’s window.
200



lcd Draw graphics
in a Patcher window
recordsprite Initiates the recording of drawing commands which will be stored in a named 
sprite. While recording, drawing commands will have no effect on the contents of 
the lcd object’s window.

reset Erases the contents of lcd and resets pen state to default values. The reset message 
is equivalent to the sequence

clear
pensize 1
penmode 0
frgb 0 0 0(black)
 brgb 255 255 255(white)
moveto 0 0

scrollrect The word scrollrect, followed by six int arguments that specify the left, top, right, 
and bottom positions of a rectangle to be scrolled and the number of pixels to 
scroll in the x and y direction, scrolls a rectangle within the lcd object’s display 
area.

size Changes the size of the lcd object. The word size must be followed by two int argu-
ments which specify the dimensions (horizontal and vertical) in pixels of the new 
size.

tilepict The word tilepict, followed by a picture name argument, fills a rectangle by tiling a 
picture. Optionally there may follow, four numbers that specify a destination 
rectangle in which the picture is tiled and four numbers that specify a source rect-
angle that specifies the area of the picture to use in the operation. These rectangles 
are specified as left, top, width, and height values in pixels. The destination rect-
angle is relative to the top left corner of the lcd display area. The source rectangle is 
relative to the top, left corner of the picture. If not present the destination rectan-
gle is set to the same size of lcd, and the source rectangle is set to be the same size 
as the picture.

write The word write, followed by any symbol, writes that symbol beginning at the cur-
rent pen position, and moves the pen position to the end of the text.

writepict The word writepict, followed by an optional filename argument, writes the current 
contents of the lcd display area to a PICT file. If no filename argument is present, a 
Save As dialog will prompt you to choose a filename and location to write the 
PICT file.

Inspector
The behavior of an lcd object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any lcd object displays the lcd Inspector in the 
201



lcd Draw graphics
in a Patcher window
floating window. Selecting an object and choosing Get Info… from the Object 
menu or also displays the Inspector.

The size of the lcd display, in pixels, can be set by typing in the Width and Height 
number boxes. The default size of the lcd object is 128 pixels high and 128 pixels 
wide.

Checking Local Mousing Mode lets you draw in the lcd display ares with the 
mouse. This feature is enabled by default.

The Draw Border checkbox is enabled by default. Checking it creates a border 
around the lcd object’s display area.

Checking the Respond to Idle Mousing option will report idle-time mouse posi-
tions over the lcd object. This feature is disabled by default.

Checking the Onscreen Mode option will set the lcd object to remembers its con-
tents so that it is not erased when it is covered. This feature is disabled by default.

Checking the Enable Sprites option will enable the drawing of sprites. This feature 
is disabled by default. When sprites are enabled, lcd consumes more memory.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
list Out 1st outlet: When you click and drag in the lcd display area with the mouse 

button held down, the coordinates of the mouse position are sent out the outlet as 
a two-item list as the mouse moves. The numbers represent local coordinates rela-
tive to the top-left corner of the lcd display area. The first number is the number of 
pixels to the right of that corner, and the second number is the number of pixels 
down from that corner.

int Out 3rd outlet: A 1 is sent out the 2nd outlet if the mouse button is currently being 
held down. A 0 is sent, otherwise.

list  Out 2nd outlet: When you click and drag in the lcd display area with the mouse 
button held down, the coordinates of the mouse position are sent out the outlet as 
a two-item list as the mouse moves. The numbers represent local coordinates rela-
tive to the top-left corner of the lcd display area. The first number is the number of 
202



lcd Draw graphics
in a Patcher window
pixels to the right of that corner, and the second number is the number of pixels 
down from that corner.

list Out 1st outlet: When you draw in the lcd with the mouse button held down, the 
coordinates of the mouse position are sent out the outlet as a two-item list as the 
mouse moves. The numbers represent local coordinates relative to the top-left 
corner of lcd. The first number is the number of pixels to the right of that corner, 
and the second number is the number of pixels down from that corner. 

list Out 4th outlet: When mouse idle mode is using the idle message or by enabling the 
Respond to Idle Mousing Inspector option, a list of current mouse coordinates is 
sent out the third outlet when the mouse is positioned over the lcd object’s display 
area.

update Out 4th outlet: The word update is output whenever lcd receives an update mes-
sage from Max telling it to redraw itself. This is only done when lcd is in onscreen 
mode

penloc Out 4th outlet: In response to the getpenloc message, lcd outputs a message consist-
ing of the word penloc followed by two numbers representing the pen location in 
local coordinates relative to the top-left corner of the lcd display area. The first 
number is the number of pixels to the right of that corner, and the second number 
is the number of pixels down from that corner.
203



lcd Draw graphics
in a Patcher window
Examples

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
MouseState Report the status and location of the mouse
oval Draw solid oval in a graphic window
panel Colored background area
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Tutorial 43 Graphics in a patcher
Graphics Overview of Max graphics windows and objects

Draw an angular snake diagram using lcd
204



led Display on/off
status in color
Input
int If the number is 0, led shows its darkened state, and outputs 0. If the number is not 

0, led shows its brightened state and outputs 1. 

float Converted to int.

bang Flashes led on and off quickly, and outputs 0.

Clicking on an led toggles it back and forth between bright and dark, outputting 1 
and 0.

blinktime In left inlet: the word blinktime, followed by a number, specifies the duration (in 
milliseconds) that led will flash when it is clicked upon or receives a bang message.

pict In left inlet: the word pict, followed by an integer from 0 to 4, changes the color 
used by led. In a modified led object, pict can be used to change the picture used 
by the object.

set The word set, followed by a non-zero number causes led to show its brightened 
state, but causes no output; set 0 shows the led object in a darkened state, but 
causes no output.

toggle Switches the led from dark to bright and sends 1 out the outlet; or vice-versa, from 
bright to dark, sending 0 out the outlet.

Inspector
The behavior of an led object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any led object displays the led Inspector in the 
floating window. Selecting an object and choosing Get Info… from the Object 
menu or also displays the Inspector.

The led Inspector lets you set the following attributes:

The LED Pict option lets you use from among five colors for the led object’s dis-
play: red (the default), green, blue, yellow, or black and white. 

Flash Time specifies the duration (in milliseconds) that led will flash when it is 
clicked upon or receives a bang message. The default is 150.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.
205 - led Objects



led Display on/off
status in color
Arguments
None.

Output
int The output is 1 when led is bright, 0 when it is dark. A bang in the inlet flashes led 

on and off and sends 0 out the outlet. 

Examples

Displays an on/off state, announces activity with a flash, or can be used as a toggle

See Also

button Flash on any message, send a bang
pictctrl Picture-based control
TogEdge Report a change in zero/non-zero values
toggle Switch between on and off (1 and 0)
Tutorial 40 Automatic actions
Objects led - 206



line Output numbers in a ramp
from one value to another
Input
list The first number specifies a target value, and the second number specifies a total 

amount of time (in milliseconds). In that amount of time, numbers are output 
regularly in a line from the currently stored value to the target value.

int or float In left inlet: The number is the target value, to be arrived at in the time specified 
by the number in the middle inlet. If no time has been specified since the last tar-
get value, the time is considered 0 and line immediately outputs the target value.

Note: the output type for the line object is set by using the first argument to the 
object (see Arguments).

In middle inlet: The number is the time, in milliseconds, in which to arrive at the 
target value.

In right inlet: The number is the interval (in milliseconds) at which intermediary 
numbers are regularly sent out.

clock The word clock, followed by the name of an existing setclock object, sets line to be 
controlled by that setclock rather than by Max’s internal millisecond clock. The 
word clock by itself sets line back to using Max’s regular millisecond clock.

stop In left inlet: Stops line from sending out numbers, until a new target value is 
received.

set In left inlet: The word set, followed by a number, makes that number the new 
starting value from which to proceed to the next received target value. The set 
message also stops line if it is in the process of sending out numbers.

Arguments
int or float Optional. The first argument sets the output type for the object—if the first argu-

ment is an int, the line object outputs integer values, and a float will set the line 
object to output floating point values. The first argument also sets the initial value 
to be stored in line and the output type for the object. If there is no argument, the 
initial value is 0 and the output type is int. The second argument sets an initial 
value for the grain, the time interval at which numbers are sent out. If the grain is 
not specified, line outputs a number every 20 milliseconds. The minimum grain 
allowed is 1 millisecond; any number less than 1 will be set to 20.

Output
int Out left outlet: Numbers are sent out at regular intervals, describing a straight line 

toward a target value. If a new target value and time are specified before the line is 
completed, the new line starts from the most recent output value, in order to 
avoid discontinuities.
207 



line  Output numbers in a ramp
from one value to another
If a value is received in the left inlet without an accompanying time value, it is sent 
out immediately (time is considered 0).

bang Out right outlet: When line has arrived at its target value, bang is sent out.

Note: In practice, the target value is arrived at in just under the amount of time 
specified (time minus grain).

Examples

See Also

envi Script-configurable envelope in a patcher window
funbuff Store x,y pairs of numbers together
setclock Control the clock speed of timing objects remotely
Uzi Send a specific number of bang messages
Tutorial 31 Using timers

Output values in a straight line... and bang when finished
 208



loadbang Send a bang automatically
when patch is loaded

209 

Input
There are no inlets. Output is triggered automatically when the file is opened, or 
when the patch is part of another file that is opened.

Arguments
None.

Output
bang Sent automatically when the patch is loaded. You can also cause loadbang to send 

out a bang by double-clicking on it in a locked patcher, or by sending a loadbang 
message to a thispatcher object in the same patcher. Holding down the Command 
key while a patch is loading prevents loadbang objects in that patch from sending 
any output.

Examples

See Also

active Send 1 when patcher window is active, 0 when inactive
button Flash on any message, send a bang
closebang Send a bang when patcher window is closed
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions

Set initial values when a patch is loaded... or start a process automatically



makenote  Generate a note-off message
following each note-on
Input
int In left inlet: The number is treated as a pitch value for a MIDI note-on message. It 

is paired with a velocity value and the numbers are sent out the outlets. After a cer-
tain time, a note-off message (a note-on with a velocity of 0) is sent out for that 
pitch.

In middle inlet: The number is stored as a velocity to be paired with pitch num-
bers received in the left inlet.

In right inlet: The number is stored as the duration (in milliseconds) that          
makenote waits before a note-off message is sent out.

float Converted to int.

list The second number is treated as the velocity and is sent out the right outlet. The 
first number is treated as the pitch and is sent out the left outlet. A corresponding 
note-off message is sent out later.

stop Causes makenote to send out immediate note-offs for all pitches it currently 
holds.

clear Erases all notes currently held by makenote, without sending note-offs.

Arguments
int Optional. The first argument sets an initial velocity value to be paired with 

incoming pitch numbers. If there is no argument, the initial velocity is 0.

The second optional argument sets an initial note duration (time before a note-
off is sent out), in milliseconds. If the second argument is not present, the note-off 
follows the note-on immediately.

float Converted to int.

Output
int Out left outlet: The number received in the left inlet is sent out immediately, 

paired with a velocity value out the other outlet. After a certain duration, the same 
number is sent out paired with a velocity of 0.

Out right outlet: The number in the middle inlet is sent out as a velocity value in 
conjunction with a pitch value out the left outlet. After a certain duration, 0 is sent 
out paired with the same pitch. 
 210



makenote Generate a note-off message
following each note-on
Examples

Supply note-offs for note-ons generated within Max

See Also

flush Provide note-offs for held notes
midiout Transmit raw MIDI data
noteout Transmit MIDI note messages
stripnote Filter out note-off messages, pass only note-on messages
xnoteout Format MIDI note messages with release velocity
Tutorial 13 Managing note data
211 



 212

match  Look for a series of numbers
output it as a list

Input
int If the numbers match the arguments, in the proper order, they are sent out as a 

list.

clear Causes match to forget all numbers it has received up to that time.

set The word set, followed by a list of numbers, specifies a new series of numbers 
match will look for.

Arguments
list Obligatory. The arguments specify numbers to look for, in the proper order. The 

word nn can be used as a wild card that will match any number.

Output
list The numbers received in the inlet are compared with the arguments. If the num-

bers are the same, and in the same order, they are sent out the outlet as a list.

Examples

Numbers must be the same, and in the same order

See Also

iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
select Select certain inputs, pass the rest on



matrixctrl Matrix switch control
matrixctrl is a user interface object that consists of a rectangular grid of switch-like controls called 
cells. All of the cells in a matrixctrl object have the same appearance and behavior. Each cell has two 
or more states. By default, the cells have two states, representing “off ” and “on.” You can create cells 
with any number of states. Clicking on a cell increases its state by one. After a cell reaches its last 
state, it returns to its zero state when clicked again—thus, a cell with only two states will toggle 
back and forth between these states with each mouse click.

matrixctrl was originally constructed to control the MSP object matrix~, but is useful for other user 
interface applications, such as groups of switches, groups of visual indicators, and drum-
machine-oriented sequencers.

Input
(Mouse) A mouse click on a cell will increase its value by one. Values in matrixctrl will wrap 

back to 0 once they have reached their maximum possible state. Dragging across 
several cells will set their values to that of the first cell clicked. Dragging across 
cells while holding down the Shift key will allow you to drag in straight horizontal 
or vertical lines only.

bang A bang causes matrixctrl to dump its current state in lists of three values for each 
cell pair, in the format

horizontal-coordinate vertical-coordinate value

list A list of ints sets cells in the matrixctrl object using the format <horizontal-coordi-
nate vertical-coordinate value>. Multiple triplets of values can be used to set 
more than one cell. Coordinates for the cells start at 0 in the upper-left hand cor-
ner and the values for each cell start at 0 and go up to the value range minus one, 
set by the object’s inspector. Substituting the symbols inc and dec in place of the 
value will increment or decrement that cell coordinate by a value of one. Chang-
ing the cell state with a list causes the list to be output from matrixctrl.

set The word set, followed by a list as described above, changes the state of matrixctrl 
without echoing the values to the output.

active The word active, followed by a 0 or 1, causes matrixctrl to ignore or respond to 
mouse clicks, respectively. By default, matrixctrl responds to mouse clicks.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename, designates 
the graphics file that the matrixctrl object will use for the matrix background 
image. The matrixctrl object accepts PICT files and, if QuickTime is installed, 
other picture file formats that are listed in the QuickTime appendix. The symbol 
used as a filename must either be the name of a file in Max’s current search path, 
or a complete pathname for the file (e.g. ‘MyDisk:Documents:UI Pictures:CoolBkgnd.pct’).

cellpicture The word cellpicture, followed by a symbol that specifies a filename, designates the 
graphics file that the matrixctrl object will use for each cell. The matrixctrl object 
accepts PICT files and, if QuickTime is installed, other picture file formats that 
213



matrixctrl Matrix switch control
are listed in the QuickTime appendix.The symbol used as a filename must either 
be the name of a file in Max’s current search path, or a complete pathname for the 
file (e.g. ‘MyDisk:Documents:UI Pictures:Cell.pct’).

clickedimage The word clickedimage, followed by a nonzero value, specifies that the graphics file 
used by the matrixctrl object contains an additional image to be displayed when a 
cell is clicked.

clickvalue The word clickvalue, followed by a number, toggles the click value mode. If the click-
value message is followed by a 0 or a positive number, clicking on a cell sets its 
value to the given number. If clickvalue is followed by a negative number, the 
matrixctrl object reverts to its default behavior in which clicking a cell increments 
its value. The clickvalue message allows the use of the matrixctrl object to create grid 
editors by creating graphics files which contain a sequence of images, each of 
which is assigned to a different value; as you click through the sequence of images, 
the cell image will change to reflect velocity, note, etc.

disable The word disable, followed by a list of number pairs which specify the horizontal 
and vertical coordinates of a cell or cells, sets the designated cell or cells so that 
they do not respond to mouse clicks. The disable message expects at least one pair 
of numbers, but more may be added to disable multiple cells (e.g., disable 0 0 3 4 9 
12). Although disabled cells will ignore mouse clicks, their values can be set using 
messages.

enable The word enable, followed by a list of number pairs which specify the horizontal 
and vertical coordinates of a cell or cells, will set any designated cell or cells which 
have been disabled using the disable message to respond to mouse clicks again. 
The disable message expects at least one pair of numbers, but more may be added 
to enable multiple cells (e.g., enable 1 1 1 2 2 2). 

getrow The word getrow, followed by a number, sends the values of the cells in the row 
designated by the number out its right outlet.

getcolumn The word getcolumn, followed by a number, sends the values of the cells in the col-
umn designated by the number out its right outlet.

horizontalmargin The word horizontalmargin, followed by a number, sets a horizontal margin (in pix-
els) between the outermost cells and the edge of the matrixctrl object’s bounding 
box.

horizontalspacing The word horizontalspacing, followed by a number, sets the horizontal distance (in 
pixels) between adjacent cells in the matrixctrl object. 

imagemask The word imagemask, followed by a nonzero value, specifies that the matrixctrl cell 
graphics file has additional rows of images for use as image masks.
214



matrixctrl Matrix switch control
inactiveimage The word inactiveimage, followed by a nonzero value, specifies that the matrixctrl 
cell graphics file has additional rows of images for use in an inactive state (set with 
an active 0 message). 

invisiblebkgnd The word invisiblebkgnd, followed by a nonzero value, specifies that the matrixctrl 
will be drawn without a background image, and its cells will be superimposed 
over any underlying Max objects. invisiblebkgnd 0 disables this feature.

one/row The word one/row, followed by a nonzero value, only allows one cell per row to 
have a non-zero state. Setting any cell in a row to a non-zero state causes any other 
non-zero cells to change to the zero state. one/row 0 removes this constraint.

one/column The word one/column, followed by a nonzero value, only allows one cell per column 
to have a non-zero state. Setting any cell in a column to a non-zero state causes 
any other non-zero cells to change to the zero state. one/column 0 removes this con-
straint.

one/matrix The word one/matrix, followed by a nonzero value, only allows one cell in the entire 
object to have a non-zero state. Setting any other cell in the matrix to a non-zero 
state causes any other non-zero cells to change to the zero state. one/matrix 0 
removes this constraint.

range The word range, followed by an int, sets the number of possible states each cell can 
have. It must be set to a value of at least 2 (for states 0 and 1).

soundfx The word soundfx, followed by a 0 or 1, toggles the use of the Appearance sounds 
available in MacOS 8.5 and newer. soundfx 0 turns the sounds off.

verticalmargin The word verticalmargin, followed by a number, sets a vertical margin (in pixels) 
between the outermost cells and the edge of the matrixctrl object’s bounding box.

verticalspacing The word verticalspacing, followed by a number, sets the vertical distance (in pixels) 
between adjacent cells in the matrixctrl object. 

Inspector
The behavior of a matrixctrl object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any matrixctrl object displays the 
matrixctrl Inspector in the floating window. Selecting an object and choosing Get 
Info… from the Object menu or also displays the Inspector.

The Cell Spacing number boxes set the horizontal and vertical distance (in pixels) 
between adjacent cells in the matrixctrl object. 

The Margin number boxes are used to specify horizontal and vertical margins (in 
pixels) between the outermost cells and the edge of the object’s bounding box.
215



matrixctrl Matrix switch control
Checking the Has Clicked Images option will use an alternate set of image frames 
in your graphics file to give the cell a different appearance when the user clicks 
and drags it.

The Has Inactive Images checkbox tells the matrixctrl object that your graphics files 
have additional images for the cell’s inactive state. Leave this box unchecked if the 
picture files used by the control do not have these images.

If you want to use image masks in your cell’s graphics file to draw the cell, select 
the Has Image Mask option. Masks can be used to create cells with a non-rectan-
gular shape. If your cell picture has separate images for the clicked and/or inactive 
state, you must supply masks for those as well.

Checking the Invisible Background box tells the matrixctrl object not to draw any-
thing for the background of the matrix. The cells will appear to “float” over any 
underlying objects. 

When the Audible Feedback option is checked, When checked the matrixctrl object 
will generate MacOS Appearance Manager sound effects when clicked.

The One Per Column, One Per Row, and One Per Matrix checkboxes define the 
matrixctrl object’s behavior. If checked, matrixctrl only allows one cell per column, 
row, or in the entire object to have a non-zero state. Setting any cell to a non-zero 
state causes any other non-zero cells to change to the zero state. 

Cell Value Range is used to set the number of possible states each cell can have. It 
must be set to a value of at least 2 (for states 0 and 1). 

Cell Picture File and Background Picture File lets you choose graphics files for the 
matrix cells and its background by clicking on the Open buttons. It can open 
PICT files and, if QuickTime is installed, other picture file formats that are listed 
in the QuickTime appendix. The current file’s name appears in the text box to the 
left each of the buttons. You can also choose a file by typing its name in this box, 
or by dragging the file’s icon from the Finder into this box.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.
216



matrixctrl Matrix switch control
Picture File Format
Background picture files for matrixctrl can be any Macintosh PICT file or, if 
QuickTime is installed, other picture file formats that are listed in the QuickTime 
appendix.If the matrixctrl is larger than the chosen picture, copies of the picture 
will be added to fill the object. 

Cell picture files must be in the following format:

The picture is made up of a grid of images. All images have the same width and 
height. Each column of images represents one cell state. The picture must have at 
least two columns, since cells must have at least two states.

The first row of images is used for the idle (or “not clicked”) appearance of the 
cells. The first row of images is mandatory; all subsequent rows are optional. The 
second row are images for the clicked appearance; these images will be used to 
draw the cell when it is clicked. The appearance of the cell reverts to its idle image 
when the mouse is released. The third row of images are used when the matrixctrl 
is in its inactive state, i.e. when it has received an active 0 message. 

Image masks can be used to create cells with non-rectangular outlines. These 
masks are in the lower rows of the picture file. If you wish to use masks for any of 
the cell images, you must provide masks for all of them—each row of images will 
have a corresponding row of masks. Like all masks for Max’s picture-based con-
217



matrixctrl Matrix switch control
trols, black pixels create areas of the corresponding image that will be drawn, and 
while pixels create invisible areas. 

Output
list When a cell changes state in response to a mouse click, a list is sent out the matrix-

ctrl object’s left outlet. The list contains the row, column, and value (state) of the 
clicked control. Individual cells can also be set by sending lists to the object’s left 
inlet. Rows and columns are numbered starting with zero, at the upper-left corner 
of the matrix.

The numbers received in the inlet are compared with the arguments. If the num-
bers are the same, and in the same order, they are sent out the outlet as a list.

Examples

matrixctrl can be used to control multiple gates and switches at once

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
218



maximum Output the greatest
in a list of numbers

219 

Input
int In left inlet: If the number is greater than the value currently stored in maximum, it 

is sent out the outlet. Otherwise, the stored value is sent out.

In right inlet: The number is stored for comparison with subsequent numbers 
received in the left inlet.

float Converted to int, unless there is a float argument, in which case all numbers are 
compared as floats.

list In left inlet: The numbers in the list are all compared to each other, and the great-
est value is sent out the outlet. The value stored in maximum is replaced by the next 
greatest value in the list.The maximum object accepts lists of up to 256 elements.

bang In left inlet: Sends the most recent output out the outlet again.

Arguments
int or float Optional. Sets an initial value to be compared with numbers received in the left 

inlet. If the argument contains a decimal point, all numbers are compared as 
floats, and the output is a float. If there is no argument, the initial value is 0.

Output
int The number received in the left inlet is compared with the value currently held by 

maximum (or numbers received as a list are compared with each other), and the 
greatest of the numbers is sent out the outlet.

float Only if there is an argument with a decimal point.

Examples

The output is the greater of two numbers, or the greatest in a list of numbers

See Also

minimum Output the smallest in a list of numbers
past Report when input increases beyond a certain number
Peak If a number is greater than previous numbers, output it
> Is greater than, comparison of two numbers



 220

mean  Find the running average
of a stream of numbers

Input
int or float The number is added to the sum of all numbers received up to that point, and the 

mean is sent out.

bang Sends out the previous output (the stored average value).

list The numbers in the list are added together, the sum is divided by the number of 
items in the list, and the mean is sent out. All previously received numbers are 
cleared from memory.

clear Resets the contents of the object to zero.

Arguments
None.

Output
float Out left outlet: The mean (average) value of all numbers received up to that point, 

or of all the numbers received together in a list.

int Out right outlet: How many numbers have been included in the averaging pro-
cess.

Examples 

Find the average value of many numbers

See Also

accum Store, add to, and multiply a number
anal Make a histogram of number pairs received
bag Store a collection of numbers
Histo Make a histogram of the numbers received
prob Make weighted random series of numbers



menubar Put up a custom
menu bar
The menubar object provides control over the Macintosh menu bar. It allows your patch to put up 
its own menus, and add items to standard File and Edit menus. When a menu item is chosen, the 
item number is sent out the outlet corresponding to the menu containing the item. You configure 
the menubar by writing a script in a text editor window available by double-clicking on the object 
in a locked patcher.

Input
int A nonzero number displays the menubar object’s menus, 0 restores the previous 

contents of the menu bar (either the Max menus or the menus of another menubar 
object).

checkitem Followed by a menu number, an item number, and a code 0 or 1, checkitem puts a 
check before the specified item if the code is 1, otherwise it removes the check.

enableitem Followed by a menu number, an item number, and a code 0 or 1, enableitem 
enables the specified item if the code is 1, otherwise it disables (and grays out) the 
item.

markitem Followed by a menu number, an item number, and an ASCII character code, mar-
kitem places the character next to the specified item. Common mark character 
ASCII codes are 18 for the check mark and 19 for the diamond mark. You may 
also wish to use the em dash (209) or bullet (165).

(menu bar) When the menubar object has been activated (by a nonzero number in its inlet) 
and an item is selected in the menu bar, the menu number and item number are 
received by the menubar object, and the item number is sent out the appropriate 
outlet.

Arguments
int Optional. The first argument sets the number of menus in the object’s menu bar. 

If present, it must be at least 5 (one additional menu). The four default menus, 
which are always present, are Apple, File, Edit, and Windows.

The second optional argument is a numerical code to indicate that certain items 
in the default menus are to be removed from those menus. The code is a sum of 
the following values assigned to the commands to be suppressed: 1=Overdrive in 
the Options menu, 2=Resume, and 4=Midi Setup.... in the File menu For exam-
ple, to eliminate the Overdrive and Midi Setup commands from the Edit menu, 
the appropriate second argument is 5 (1+4).

Script Messages

You define a menubar with a series of script messages, typed into a text editor window opened by 
double-clicking on a menubar object in a locked patcher. When you close the script window and 
221 



menubar  Put up a custom
menu bar
confirm saving the changes, the script file is interpreted. If there are no errors, the customized 
menu bar will be ready for use when menubar receives a nonzero number in its inlet.

Each message should be preceded by #X and end with a semicolon (;). The first script message 
must be apple and the last end. An example script follows the definition of the messages.

Messages to Modify Standard Menus
Message Arguments

apple • Text of the first Apple menu item (i.e. About My Program…).

file • Item number to output
• Text of item to add to file menu

The file message inserts items at the top of the standard File menu (before the 
Midi Setup... menu item). Each item has a number associated with it which is 
sent out the when the item is chosen. The order in which your additional items 
appear in the File menu is determined by their order in the script, not by the 
(arbitrary) number associated with each item.

edit • Item number to output
• Text of item to add to edit menu

The edit message inserts items into the standard Edit menu after the Clear item 
and before the Overdrive and Resume items (which are moved into the Edit 
menu when menubar is activated). A blank line separates the custom inserted 
items from the default items. Each item has a number associated with it which is 
sent out the third outlet of menubar when the item is chosen. The order in which 
your additional items appear in the Edit menu is determined by their order in the 
script, not by the (arbitrary) number associated with each item.

newitem • Item number to output.

The newitem message followed by a non-zero number directs Max to send the 
specified number out the menubar object’s File menu outlet when the user chooses 
the New command from the File menu, instead of opening a new patcher win-
dow. The message newitem 0 (or the absence of any newitem message) causes the 
New command to behave normally.

open • Item number to output.

The open message followed by a non-zero number directs Max to send the speci-
fied number out the menubar object’s File menu outlet when the user chooses the 
Open... command from the File menu, instead of displaying the Open Document 
dialog box. The message open 0 (or the absence of any open message) causes the 
Open... command to behave normally.
 222



menubar Put up a custom
menu bar
closeitem (No arguments.)

Causes a Close item to appear in the File menu, for closing the active window.

saveas • Item number to output.

The saveas message followed by a non-zero number directs Max to send the speci-
fied number out the menubar object’s File menu outlet when the user chooses Save 
or Save As… from the File menu, instead of performing the standard Save 
actions. The number sent out the outlet when Save is chosen will be 1 less than the 
number sent when Save As… is chosen. The message saveas 0 (or the absence of 
any saveas message) causes the Save and Save As... commands to behave normally.

Messages for Creating New Menus and Items
Message Arguments
menutitle • Menu number (must be at least 5 and must not exceed the number of outlets 

specified in the argument to menubar
• Name of menu

The menutitle message adds a new menu after the Windows menu in the menu bar. 
The first additional menu is number 5. The menu number determines both the 
order of the additional menu in the menu bar and the outlet it uses when the user 
chooses its items. A menutitle message must appear in the script before any item 
messages that refer to its menu number.

item • Menu number
• Item number
• Text of item
• (Optional.) “Meta-characters”

The item message adds an item to an additional menu previously defined with a 
menutitle message. The order in which your items appear in the menu is deter-
mined by their order in the script, not by the (arbitrary) number associated with 
each item. The item number argument only specifies the number which is sent 
out the menubar object’s outlet when the user chooses this item. It’s a good idea to 
start your item numbers at 1 and list the items in the order you want them to 
appear in a menu.

You can alter the appearance of a menu item by including “meta-characters” in the 
item text. These are special characters recognized by the Toolbox’s AppendMenu() 
function. (For a complete explanation, see Inside Macintosh, Volume I, pp. I-346 - 
I-349). A few of the recognized meta-characters are:

/ followed by a character, assigns that character as a Command-key equivalent
< followed by B, I, O, S, or U, specifies a font style (such as O for outline)
223 



menubar  Put up a custom
menu bar
! followed by a character, marks the menu item with that character
(disables the menu item

Thus, these special characters cannot appear as part of the actual item text. For 
example, the text On/Off will appear as “Onff_O”, not as “On/Off ”.

Completing the Script Definition
Message Arguments

end (No arguments.)

The end message builds the menus and reports any errors encountered.

Output
int The default menubar object has four outlets. If the menubar object has been acti-

vated (by receiving a nonzero number in its inlet), the leftmost outlet sends a 1 
when the first item in the Apple menu is chosen. The second outlet sends the item 
number when an extra item is chosen from the File menu. The third outlet sends 
the item number when an extra item is chosen from the Edit menu. The fourth 
outlet sends an item number when the user chooses an item from the Windows 
menu. If additional menus have been defined, item numbers are sent out the addi-
tional outlets to the right, starting with the fifth one.

Examples

Here is an example menubar script:

#X apple About Note Algorithms…;
#X closeitem;
#X menutitle 5 Algorithm;
#X item 5 1 Transpose;
#X item 5 2 Invert;
#X item 5 3 Randomize;
#X end;

Note that we suggest capitalizing each letter in a menu item to maintain a consistent style with 
other items in the menu.
 224



menubar Put up a custom
menu bar
The above script is used in a menubar in the following example, which uses the extra menu to 
switch among three note-processing algorithms.

An implementation of the example menubar script

See Also

umenu Pop-up menu to display and send commands
Menus Explanation of commands
225 



message Send any
message
Input
The message object (a box that displays and sends out a message) is often referred 
to as the message box, in order to distinguish it from a message (the data that is 
actually sent from one object to another).

bang Sends out the contents of the message box. A mouse click on the message box has 
the same effect.

int or float The number replaces the value stored in the argument $1, if such an argument 
exists, then sends out the contents of the message box.

list Each item in the list is stored in place of its corresponding $ argument, if such an 
argument exists, then the contents of the message box are sent out.

symbol The word symbol, followed by a symbol, stores that symbol in the $1 argument, 
then sends out the contents of the message box.

color The word color, followed by a number from 0 to 15, sets the color of the message 
box to one of the object colors which are also available via the Color command in 
the Object menu.

set The word set, followed by a message, sets the contents of the message box to that 
new message, without triggering output. The word set by itself erases the contents 
of the message box.

append The word append, followed by a message, appends that message (preceded by a 
space) at the end of the contents of the message box, without triggering output.

prepend The word prepend, followed by a message, places that message (followed by a 
space) before the beginning of the contents of the message box, without triggering 
output.

open Opens the message Inspector window. If the word open is followed by a 1, the con-
tents of the message box will be sent out its outlet when the text field in the Inspec-
tor window is changed or the Inspector window is closed. The second optional 
argument to the open message is a symbol which specifies the prompt that will 
appear at the top of the dialog box. The default prompt is Set Message Text. Use 
single smart quotes (option-] and shift-option-]) if you want to include spaces in 
the prompt.

open Opens the message Inspector window. If the word open is followed by a 1, the con-
tents of the message box will be sent out its outlet when the text field in the Inspec-
tor window is changed or the Inspector window is closed. The second optional 
argument to the open message
226



message Send any
message
Inspector
The contents of the message object can be changed by selecting the object and 
choosing Get Info… from the Object menu. You cannot use the Inspector for the 
message object in a floating window.

Typing in the Set Message Text text area specifies the contents of the message box.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
anything The initial contents of the message box are typed in when the patcher window is 

unlocked. Any message of up to 256 items can be contained in a message box. 
Certain characters have special meaning.

$ A dollar sign ($), followed immediately by a number, is a changeable argument . 
This argument’s value can be replaced by the corresponding item in a list received 
in the inlet. (Example: $2 stores the second item in a list as its value before sending 
out the contents of the message box.) The value of a changeable argument is ini-
tially 0.

, A comma (,) divides a message into separate messages which will be sent out in 
order. (Example: 3, 4, 5 sends out 3, then 4, then 5.)

; A semicolon (;) sends a message to a receive object. The first item following a 
semicolon is the name of the receive object. The rest of the message (or up to the 
next semicolon) is sent to that object, rather than out the outlet. The first item 
after the semicolon can be a changeable argument, so an incoming message can 
set the destination of the message “on the fly.”

\ A backslash (\) is used to negate the special traits of a special character. When a 
backslash immediately precedes a dollar sign, comma, or semicolon, the charac-
ter is treated as a normal character. (Example: Notes played were C\, E\, and G.)

Output
anything The contents of the message box are normally sent out the outlet. If a semicolon is 

present, the rest of the message (or up to the next semicolon) is sent to the speci-
fied receive object, rather than out the outlet.
227



message Send any
message
Examples

Send a simple message, or construct a message of any degree of complexity

See Also

append Append arguments at the end of a message
prepend Place one message at the beginning of another
receive Receive messages without patch cords
Tutorial 1 Saying “Hello!”
Tutorial 25 Managing messages
228



metro Output a bang message
at regular intervals
Input
int or float In left inlet: Any number other than 0 starts metro. At regular intervals, metro 

sends a bang out the outlet. 0 stops metro.

In right inlet: The number is the time interval, in milliseconds, at which metro 
sends out a bang. A new number in the right inlet does not take effect until the 
next output is sent.

bang In left inlet: Starts metro.

stop In left inlet: Stops metro.

clock The word clock, followed by the name of an existing setclock object, sets the metro 
to be controlled by that setclock rather than by Max’s internal millisecond clock. 
The word clock by itself sets metro back to using Max’s regular millisecond clock.

ext In left inlet: The message ext 1 causes metro to be controlled by OMS Timing (or 
the MIDI Manager if OMS is not installed), which is useful for synchronizing the 
metro with other OMS-compatible applications. The message ext 0 restores the 
metro to using Max’s internal millisecond clock.

Arguments
int or float Optional. The first argument sets an initial value for the time interval at which 

metro sends its output. If there is no argument, the initial time interval is 5 milli-
seconds. Any argument less than 5 will be set to 5. If the second argument is 1, 
metro uses the MIDI Manager external clock (see the ext message discussion 
above). If the second argument is 0 or not present, metro uses Max’s internal milli-
second clock.

Output
bang A bang is sent immediately when metro is started, and at regular intervals thereaf-

ter. 
229 



metro  Output a bang message
at regular intervals
Examples

Repeatedly send a message or trigger a process

See Also

clocker Report the elapsed time, at regular intervals
counter Count the bang messages received, output the count
setclock Control the clock speed of timing objects remotely
timein Report time from external time code source
tempo Output numbers at a metronomic tempo
Uzi Send a specific number of bang messages
Tutorial 4 Using metro
 230



midiflush Send note-offs for hanging
note-ons in raw MIDI data

231 

Input
int midiflush expects raw MIDI data from a source such as seq or midiin. midiflush 

passes the data through unchanged, and observes which note-on messages on 
each channel have not received matching note-off messages.

bang When midiflush receives a bang, it outputs MIDI note-off messages for all note-ons 
which have not been matched by note-offs since the object was created (or the last 
bang message was sent).

clear Erases any note-ons held by midiflush, without sending any note-offs.

Arguments
None.

Output
int midiflush passes all its input through to its output, and sends MIDI note-off mes-

sages (as a series of numbers) for all note-ons which have not been matched by 
note-offs at its input.

Examples

When midiflush receives a bang, it supplies note-offs for any held note-ons

See Also

flush Provide note-offs for held notes
midiin Output received raw MIDI data
midiout Transmit raw MIDI data
seq Sequencer for recording and playing MIDI



midiformat  Prepare data in the form
of a MIDI message
Input
Numbers received in the inlets are used as data for MIDI messages. The data is 
formatted into a complete MIDI message (with the status byte determined by the 
inlet) and sent out the outlet as individual bytes.

list In leftmost inlet: The first number is a pitch value and the second number is a 
velocity value, to be formatted into a note-on message.

In 2nd inlet: The first number is an aftertouch (pressure) value and the second 
number is a pitch value (key number), to be formatted into a polyphonic key 
pressure message.

In 3rd inlet: The first number is a control value and the second number is a con-
troller number, to be formatted into a control message.

int In 4th inlet: The value is formatted into a program change message.

In 5th inlet: The value is formatted into an aftertouch (channel pressure) mes-
sage.

In 6th inlet: The value is formatted into a pitch bend message.

In rightmost inlet: The number is stored as the channel number of the MIDI mes-
sages. The actual value of the status byte is dependent on the channel. Numbers 
greater than 16 are wrapped around to stay between 1 and 16.

float Converted to int.

Arguments
int Optional. Sets an initial value for the channel number of the MIDI messages. 

Numbers greater than 16 are wrapped around to stay between 1 and 16. If there is 
no argument, the channel number is initially set to 1.

float Converted to int.

Output
int MIDI messages are sent out as individual bytes, for recording by the seq object or 

for transmission by the midiout object.
 232



midiformat Prepare data in the form
of a MIDI message
Examples

Numbers are formatted into MIDI messages and sent out as individual bytes

See Also

Borax Report current information about note-ons and note-offs
midiout Transmit raw MIDI data
midiparse Interpret raw MIDI data
MIDI MIDI overview and specification
Tutorial 34 Managing raw MIDI data
233 



midiin  Output received
raw MIDI data
Input
(MIDI) midiin receives all MIDI messages from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming MIDI messages. The word port is 
optional and may be omitted.

(mouse) Double-clicking on a midiin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming MIDI messages. If 

there is no argument, midiin receives from port a (or the first input port listed in 
the MIDI Setup dialog.)

Output
int All MIDI messages received from the specified port are sent out the outlet, byte-

by-byte. Note that midiin does not “clean up” any use of running status in the 
incoming MIDI stream.

Examples

MIDI messages received in a port are output by a midiin object
 234



midiin Output received
raw MIDI data
See Also

midiout Transmit raw MIDI data
midiparse Interpret raw MIDI data
notein Output received MIDI note messages
rtin Output received MIDI real time messages
sysexin Output received MIDI system exclusive messages
xnotein Interpret MIDI note messages with release velocity
xbendin Interpret extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification
OMS Using Max with OMS
Ports How MIDI ports are specified
235 



midiout  Transmit
raw MIDI data
Input
int The number is transmitted as a byte of a MIDI message to the specified port.

float Converted to int.

list The numbers are transmitted sequentially as individual bytes of a MIDI message 
to the specified port.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port The word port, followed by a letter a-z or a MIDI output device name, specifies the 
port used to transmit the MIDI messages. The word port is optional and may be 
omitted.

(mouse) Double-clicking on a midiout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI data. If there is no argument, 

midiout transmits out port a (or the first output port listed in the MIDI Setup dia-
log.)

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

Output
(MIDI) There are no outlets. The output is a byte of a MIDI message transmitted directly 

to the object’s MIDI output port.

Examples

MIDI bytes received in the inlet are transmitted out the specified port
 236



midiout Transmit
raw MIDI data
See Also

midiformat Prepare data in the form of a MIDI message
midiin Output received raw MIDI data
noteout Transmit MIDI note messages
sxformat Prepare MIDI system exclusive messages
xbendout Format extra precision MIDI pitch bend messages
xnoteout Format MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification
237 



midiparse  Interpret raw
MIDI data
Input
int Numbers received in the inlet are treated as bytes of a MIDI message (usually 

from a seq or midiin object). The status byte determines the outlet which will be 
used to output the data bytes. 

float Converted to int.

bang Clears the midiparse object’s memory of any partial MIDI message received up to 
that point.

Output
list Out leftmost outlet: A note-on message. The first number is a pitch value and the 

second number is a velocity value.

Out 2nd outlet: A polyphonic key pressure message. The first number is an after-
touch (pressure) value and the second number is a pitch value (key number).

Out 3rd outlet: A control message. The first number is a control value and the sec-
ond number is a controller number.

int Out 4th outlet: The number is a program change.

Out 5th outlet: The number is an aftertouch (channel pressure) value.

Out 6th outlet: The number is a pitch bend value.

Out rightmost outlet: The number is the MIDI channel number.

Examples

Interpret the meaning of MIDI messages and filter different types of data
 238



midiparse Interpret raw
MIDI data
See Also

Borax Report current information about note-ons and note-offs
midiformat Prepare data in the form of a MIDI message
midiin Output received raw MIDI data
Tutorial 34 Managing raw MIDI data
239 



 240

minimum  Output the smallest
in a list of numbers

Input
int In left inlet: If the number is less than the value currently stored in minimum, it is 

sent out the outlet. Otherwise, the stored value is sent out.

In right inlet: The number is stored for comparison with subsequent numbers 
received in the left inlet.

float Converted to int, unless there is a float argument, in which case all numbers are 
compared as floats.

list In left inlet: The numbers in the list are all compared to each other, and the small-
est value is sent out the outlet. The value stored in minimum is replaced by the next 
smallest value in the list. The minimum object accepts lists of up to 256 elements.

bang In left inlet: Sends the most recent output out the outlet again.

Arguments
int or float Optional. Sets an initial value to be compared with numbers received in the left 

inlet. If the argument contains a decimal point, all numbers are compared as 
floats, and the output is a float. If there is no argument, the initial value is 0.

Output
int The number received in the left inlet is compared with the value currently held by 

minimum (or numbers received as a list are compared with each other), and the 
smallest of the numbers is sent out the outlet.

float Only if there is an argument with a decimal point.

Examples

The output is the lesser of two numbers, or the smallest in a list of numbers

See Also

maximum Output the greatest in a list of numbers
Trough If a number is less than previous numbers, output it
< Is less than, comparison of two numbers



mousefilter Pass numbers only when
the mouse button is up

241 

Input
int If the mouse button is up, the number is sent out the outlet. Otherwise, the num-

ber is ignored.

Arguments
None.

Output
int The number received in the inlet is sent out only if the mouse button is up.

Examples

Nothing gets through unless the mouse is up

See Also

MouseState Report the status and location of the mouse
Tutorial 39 Mouse control



MouseState  Report the status and
location of the mouse
Input
bang Sends out the current horizontal and vertical coordinates of the location of the 

mouse, as well as the change in location since the last output.

poll Causes MouseState to send out the mouse location, and the change in mouse loca-
tion, whenever the mouse is moved, as well as when a bang is received. If poll is fol-
lowed by the name of a graphics window, the coordinates returned by MouseState 
will be local to the graphics window, and only sent while the graphics window is 
visible.

nopoll Undoes a poll message, reverting MouseState to its normal condition of waiting for 
a bang before reporting.

zero Resets the point MouseState considers as the 0,0 point from which to measure the 
mouse location. The current location of the mouse is considered the new 0,0 
point.

reset Resets the 0,0 point to its default setting, in the upper left corner of the screen.

Arguments
None.

Output
int MouseState must have received at least one bang or poll message in its inlet before 

any output is sent out.

Out left outlet: Each time the mouse button is pressed, 1 is sent out. Each time the 
mouse button is released, 0 is sent out.

Out 2nd outlet: The horizontal location of the mouse, measured in terms of the 
number of pixels the mouse is to the right of the 0 point.

Out 3rd outlet: The vertical location of the mouse, measured in terms of the num-
ber of pixels the mouse is below the 0 point.

Out 4th outlet: The change in horizontal location of the mouse, since the last time 
the mouse location was reported.

Out right outlet: The change in vertical location of the mouse, since the last time 
the mouse location was reported.
 242



MouseState Report the status and
location of the mouse
Examples

The mouse can provide continuous or discrete values

See Also

mousefilter Pass numbers only when the mouse button is up
Tutorial 39 Mouse control
243 



movie  Play a QuickTime
movie in a window
The movie and imovie objects require the QuickTime™ Extension. The objects will not be created 
if QuickTime is not installed. movie plays a QuickTime movie in its own window. imovie plays a 
QuickTime movie in a box inside a patcher window.

Input

All messages below, recognized by the movie object, are similarly recognized by imovie.

int Sets the current time location of the movie. If the movie is playing, it will play 
from the newly set location. 0 is always the beginning. The end time varies from 
one movie to another. (The length message reports the end time location out the 
left outlet.)

active The word active, followed by a nonzero number, makes the movie active (the 
default). Followed by a 0, active makes the movie inactive. An inactive movie will 
not play or change location.

autofit The word autofit, followed by a nonzero number, scales the movie to fit in the win-
dow currently displayed.

bang Same as resume.

border The word border, followed by a 0 or 1, toggles the movie’s border type. The mes-
sage border 1 (the default) uses the traditional Macintosh-style border for the 
movie window. The message border 0 displays only the rectangle in which the 
movie plays.

clear Has the same effect as dispose with no arguments.

dispose Closes the movie window if it is open, and removes all movies from the movie 
object’s memory. If the word dispose is followed by the name of a loaded movie, 
only the named movie will be removed.

getrate Reports the current rate multiplied by 65536 out the right outlet. Thus, normal 
speed is reported as 65536, half speed is reported as 32768, double speed backward 
is reported as -131072, etc. If the movie is not playing, the rate is reported as 0, and 
if no movie has yet been loaded nothing is sent out.

length Reports the end time location of the movie.

loadintoram The word loadintoram, followed by a nonzero number, attempts to load the entire 
movie into memory, if possible. The default is 0.

loop The word loop, followed by a nonzero number, turns looping for the current film 
on. loop 0 (the default) disables looping.

loopend The word loopend, followed by a number, sets the end point of a loop. The default 
value is corresponds to the end of the film.
 244



movie Play a QuickTime
movie in a window
loopset The word loopset, followed by two numbers, sets the beginning and end points of a 
loop. the default values are 0 (i.e., the start of the film) for the start point and the 
end of the film for the endpoint.

loopstart The word loopstart, followed by a number, sets the beginning point of a loop. The 
default value is 0 (i.e., the start of the film).

matrix The word matrix, followed by nine floating point numbers, reloads the current 
movie into RAM after performing a transformation matrix operation on the 
image. This transformation is the same one used for the mapping in QuickTime 
of points from one coordinate space (i.e, the original image) into another coordi-
nate space (a scaled, rotated, or translated version of the original image).

The transform matrix operation consists of nine matrix elements

a b u

c d v

t_x t_y w

if u and v are 0., and w is 1., we have the following translation formula.

x’ = a*x + c*y + t_x;

y’ = b*x + d*y + t_y

The following formulas are used for scaling/rotation:

a=xscale*cos(θ)

b=yscale*sin(θ)

c=xscale*(-sin(θ))

d=yscale*cos(θ)

For more on the transformation matrix, consult the Apple QuickTime Developer 
documentation found at:

http://developer.apple.com/techpubs/quicktime/qtdevdocs/INMAC/QT/iqMovieToolbox.c.htm#18006

mute The word mute, followed by a nonzero number, turns off the movie’s sound (if it 
has any). Followed by a 0, mute turns on the movie’s sound (the default).

next The word next, followed by a number, moves the time location ahead by that 
amount. If no number is supplied, next moves the time ahead by 5. (The actual 
time meaning of these units varies from movie to movie.)
245 



movie  Play a QuickTime
movie in a window
nextmovie Stops the movie if it is playing, and switches to the movie that was loaded just 
prior to the current movie. (The movies are stored in reverse order from the order 
in which they were loaded.) If there is no prior movie, nextmovie wraps around 
back to the most recently loaded movie. Note that the title of the movie window is 
not automatically changed, even though the “current movie” has been changed by 
nextmovie.

open Brings the movie window to the foreground (applies only to movie, not imovie).

passive The word passive, followed by a nonzero number, sets the passive mode. In passive 
mode, starting a movie will not cause the frame to change unless a bang message 
is received. passive 0 (the default) sets the movie object to respond to normal start 
messages.

pause Stops the movie.

prev The word prev, followed by a number, moves the time location backward by that 
amount. If no number is supplied, prev moves the time backward by 5.

quality The word quality, followed by a number, sets the minimum interval, in millisec-
onds, between movie redraws. The default is 0 (i.e., no minimum).

rate The word rate, followed by one or more integers or floats, sets the playing speed of 
the movie. If rate is followed by one integer, that number is taken to be a whole 
number playing speed. If rate is followed by two numbers, the first number is 
taken to be the numerator and the second the denominator of a fractional speed. 
1 is the normal playing speed, 0 means the movie is stopped, and a negative rate 
plays backwards. rate 1 2 would play the movie at half speed. Immediately after you 
send a non-zero rate message, the movie will begin playing, so you may wish to 
precede any rate messages with an integer to locate to the desired starting position.

read The word read, followed by a symbol, looks for a QuickTime movie file with that 
name in Max’s file search path, and opens it if it exists, displaying the movie’s first 
frame in a movie window. If the filename contains any spaces or special charac-
ters, the name should be enclosed in single smart quotes (obtained by typing 
option-] and option-shift-]) or each special character should be preceded by a 
backslash (\). The word read by itself puts up a standard Open Document dialog 
box and reads in any movie file you select. The read message will open at least 26 
different types of files that can be opened by QuickTime, these include movie files 
such as MPEG, audio files including AIFF and MP3, and graphics files including 
GIF and JPEG. 

readany The readany message opens any type of file, using QuickTime routines to try to 
interpret it as a movie or other supported media file.

rect The word rect, followed by four numbers, specifies the size of the rectangle in 
which the movie is displayed within the movie window. The first two numbers 
 246



movie Play a QuickTime
movie in a window
specify the position of the rectangle within the movie window, in relative coordi-
nates, and the second two numbers specify the width and height, in pixels, of the 
rectangle.

resume Begins playing the movie from its current location, at the most recently specified 
rate.

start Sets the movie’s rate to 1 and begins playing from the beginning. If the word start 
is followed by the name of a specific loaded movie, that movie becomes the cur-
rent movie before starting.

startat The word switch, followed by a number, set the current time location of the movie 
and begins playing from that point.

stop Stops the movie.

switch The word switch, followed by a symbol, make the named movie the active one 
without changing the transport state (See the start message).

time Reports the current time location of the movie.

title Sets the title of the movie window to the name of the current movie. This is neces-
sary in conjunction with the nextmovie message (or a start message specifying a dif-
ferent movie) if you want the title of the movie window to show the name of the 
current movie correctly. You can set the title of the movie window to any text you 
want, using the message title followed by a symbol.

vol The word vol, followed by a number, sets the movie’s sound volume. Any number 
less than 1 mutes the sound. The maximum volume is 255.

wclose Closes the movie window.

windowpos The word windowpos, followed by four numbers, specifies the location and size of 
the movie window on the screen. The four numbers specify the left, top, right, 
and bottom of the movie window in global coordinates. This message is only sup-
ported by the movie object, not the imovie object.

Arguments
symbol Optional. Specifies the name of a QuickTime movie file to be read into movie 

automatically when the patch is loaded. The same effect can be achieved for 
imovie by selecting the object in an unlocked patcher and choosing Get Info... 
from the Object menu to select a movie file. Both objects retain the name(s) of the 
movie(s) they have loaded at the time that the patch is saved, and attempt to load 
the same movie(s) the next time the patch is opened.
247 



movie  Play a QuickTime
movie in a window
Output
int Out left outlet: The current time location, when a time message is received; the end 

time location when a length message is received.

Out middle outlet: The horizontal position of the mouse, relative to the left side of 
the movie box or window, when the mouse is clicked or dragged inside the movie.

Out right outlet: The vertical position of the mouse, relative to the top of the 
movie box or window, when the mouse is clicked or dragged inside the movie.

Also, in response to a getrate message, the current movie rate multiplied by 65536 
is sent out the right outlet.

Examples

Play a QuickTime movie, or move through it in a variety of ways

Hold multiple movies (which are stored in reverse order from the order received)

See Also

imovie Play a QuickTime movie in a patcher window
 248



mtr Multi-track
sequencer
Input
record In left inlet: Begins recording all messages received in the other inlets. The word 

record, followed by one or more track numbers, begins recording those tracks.

In other inlets: Begins recording messages on the track that corresponds to the 
inlet.

play In left inlet: Plays back all messages recorded earlier, sending them out the corre-
sponding outlets in the same rhythm and at the same speed they were recorded. 
The word play, followed by one or more track numbers, begins playing those 
tracks.

In other inlets: Plays back all messages on the track that corresponds to the inlet.

stop In left inlet: Stops mtr when it is recording or playing. The word stop, followed by 
one or more track numbers, stops those tracks.

In other inlets: Stops the track that corresponds to the inlet.

next In left inlet: Causes each track to output only the next message in its recorded 
sequence. When a next message is received, the track number and the delta time of 
each message being output are sent out the leftmost outlet as a list. The word next, 
followed by one or more track numbers, outputs the next message stored in those 
tracks.

In other inlets: Outputs the next message stored on the track that corresponds to 
the inlet.

rewind In left inlet: Resets mtr to the beginning of its recorded sequence. This command 
is used to return to the beginning of the sequence when stepping through mes-
sages with next. To return to the beginning of a sequence while playing or record-
ing, just repeat the play or record message. When mtr is playing or recording, a stop 
message should precede a rewind message. The word rewind, followed by one or 
more track numbers, returns to the beginning of those tracks.

In other inlets: Returns the pointer to the beginning of the track that corresponds 
to the inlet.

mute In left inlet: Causes mtr to stop producing output, while still continuing to “play” 
(still moving forward in the sequence). The word mute, followed by one or more 
tracks, mutes those tracks.

In other inlets: Mutes the track that corresponds to the inlet.

delay In left inlet: The word delay, followed by a number of milliseconds, sets the first 
delta time value of each track to that number, so that all tracks begin playing back 
that amount of time after the play message is received.
249 



mtr  Multi-track
sequencer
In other inlets: Sets the initial delta time of the track that corresponds to the inlet.

first In left inlet: The word first, followed by a number of milliseconds, causes mtr to 
wait that amount of time after a play message is received before playing back. 
Unlike delay, first does not alter the delta time value of the first event in a track, it 
just waits a certain time (in addition to the first delta time) before playing back 
from the beginning.

write In left inlet: Calls up the standard Save As dialog box, allowing the contents of mtr 
to be saved as a separate file. Note that the only way to save the contents of mtr is 
with the write message; the object’s contents cannot be embedded in a patcher file.

In other inlets: Writes a file containing only the track that corresponds to the inlet.

read In left inlet: Calls up the standard Open Document dialog box, so that a previ-
ously saved file can be read into mtr.

In other inlets: Opens a file containing only the track that corresponds to the 
inlet.

int In any inlet other than the left inlet: If the track is currently being recorded, num-
bers received in that track’s inlet are combined with a delta time (the number of 
milliseconds elapsed since the previous event) and stored in mtr.

list In any inlet other than the left inlet: If the track is currently being recorded, lists 
received in that track’s inlet are stored in mtr, preceded by the delta time.

any symbol In any inlet other than the left inlet: If the track is currently being recorded, sym-
bols received in that track’s inlet are stored in mtr, preceded by the delta time.

Although mtr can record individual bytes of MIDI messages received from midiin, 
it stores each byte with a separate delta time, and does not format the MIDI mes-
sages the way seq does. If you want to record complete MIDI messages and edit 
them later, seq is better suited for the task. On the other hand, mtr is perfectly 
suited for recording sequences of numbers, lists, or symbols from virtually any 
object in Max: specialized MIDI objects such as notein or pgmin, user interface 
objects such as number box, slider, and dial, or any other object.

In order for a file to be read into mtr for playback, it must be in the proper format. 
An mtr multi-track sequence can even be typed in a text file, provided it adheres 
to the format. The contents of the different tracks are listed in order in an mtr file, 
and the format of each track is as follows. Note that a semicolon (;) ends each line.

Line 1: track <track number>;(Track in which to store subsequent data)
Line 2, etc.:<delta time> <message>;
Last line:end; (End of this track’s data)
 250



mtr Multi-track
sequencer
clear In left inlet: Erases the contents of mtr. The word clear, followed by one or more 
track numbers, clears those tracks.

In other inlets: Erases the track that corresponds to the inlet.

unmute In left inlet: Undoes any previously received mute messages. The word unmute, fol-
lowed by one or more track numbers, unmutes those tracks.

In other inlets: Unmutes the track that corresponds to the inlet.

Arguments
int Optional. Specifies the number of tracks in the mtr. The number of tracks deter-

mines the number of inlets and outlets in addition to the leftmost inlet and outlet. 
Up to 32 tracks are possible. If there is no argument, there will be only one track.

Output
anything Out all track outlets: When a play message is received in the leftmost inlet, the 

messages stored in each track are sent out the outlet of that track, in the same 
rhythm and at the same speed they were recorded. A play message received in the 
inlet of an individual track plays that particular track.

When a next message is received in the leftmost inlet, the next message in each 
track is sent out its corresponding outlet. The word next, received in the inlet of an 
individual track, sends out the next message in that track.

list Out left outlet: Whenever a value is sent out in response to a next message, the 
track number and delta time of that value are sent out the left outlet as a two-item 
list.
251 



mtr  Multi-track
sequencer
Examples

Record MIDI data or other events

See Also

hslider Output numbers by moving a slider onscreen
multiSlider Multiple slider and scrolling display
seq Sequencer for recording and playing MIDI
timeline Time-based score of Max messages
rslider Display or change a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 36 Multi-track sequencing
Sequencing Recording and playing back MIDI performances
 252



multiSlider Multiple slider
and scrolling display
Input
int Sets all slider values and positions to the number received and outputs a list 

reflecting the current values. If the multiSlider data type is set to float, the values in 
the incoming list are converted to floats.

float Sets all slider values and positions to the number received and outputs a list 
reflecting the current values. If the multiSlider data type is set to int, the values in 
the incoming list are truncated and converted to ints.

list Sets each slider to a corresponding value in the list from left to right, with the first 
value in the list setting the first slider. If the multiSlider has a different number of 
sliders than is present in the list, the number of sliders is changed to the number of 
items in the list. In such a case, the outside dimensions of the multiSlider will not 
change, only the width or height of the sliders.

bang Outputs the current slider values as a list.

border The word border, followed by an integer, tells a multiSlider which of its outside bor-
ders to draw. This is useful for placing multiSlider objects next to each other. The 
arguments to border are:

border 0 Draw no borders
border 1 Draw left border
border 2 Draw right border
border 4 Draw top border
border 8 Draw bottom border

Any combination of borders can be drawn by adding these values. For example, 
border 15 draws all borders.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values 
for the background color of the multiSlider object. The default value is white (brgb 
255 255 255).

cont_data Toggles continuous output mode on and off for nonscrolling display styles. If this 
mode is turned on, the multiSlider will output a list of its current slider values each 
time the mouse moves during a dragging operation. If this mode is turned off, the 
multiSlider will only output a list when the mouse button is pressed and when it is 
released. The initial setting for continuous output mode is specified by selecting 
the multiSlider and choosing Get Info... from the Object menu.

displayonly Toggles display only mode on and off. When display only mode is on, the multi-
Slider object will not allow user interaction with the display. The default is off (0). 

echo Toggles echo mode on and off. When echo mode is on, the multiSlider object will 
output any list received in its inlet. The default is off (0).
253



multiSlider Multiple slider
and scrolling display
fetch The word fetch, followed by a number, sends the value of the numbered slider out 
the rightmost outlet.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values 
for the slider color of the multiSlider~ object. The default value is black (frgb 0 0 0).

interpolate Toggles interpolation mode on and off. When interpolation mode is on, the multi-
Slider object will output interpolated values when a slider is moved. 

limit The word limit, followed by two floats, sets the low and high range values for the 
multiSlider object. The default values are -1.0 and 1.0. The high and low limits can 
also be set individually using the limit_lo and limit_hi messages.

limit_hi The word limit_hi, followed by a floating point value, sets the high range value for 
the multiSlider object. The default is 1.0. 

limit_lo The word limit_lo, followed by a floating point value, sets the low range value for 
the multiSlider object. The default is -1.0. 

max Sets all sliders to their maximum values.

maximum Same as max.

min Sets all sliders to their minimum values.

minimum Same as min.

(mouse)    The way that a multiSlider responds to the mouse is determined by its chosen dis-
play style (see Arguments, below). A multiSlider will respond to mouse clicks 
when its display style is nonscrolling (Thin Line or Bar) or reverse scrolling (Rev 
Point or Rev Line). Clicking on a forward scrolling display multiSlider (Point 
Scroll or Line Scroll) has no effect.

When the display style is nonscrolling, clicking on any slider in a multiSlider 
immediately positions the slider at the click point. The current value of all sliders 
is sent out. Dragging across a multiSlider will set the other sliders in the same man-
ner. If continuous output mode is enabled, the list of the current values will be 
sent out each time the mouse moves while dragging. If the continuous output 
mode is off, this list is only sent out when the mouse button is pressed or released.

When the display style is reverse scrolling, the output response is the same, but 
the display is continuously updated, showing past states of the multiSlider. This 
continuous update of the display does not necessarily imply continuous output 
by the multiSlider; that is determined by whether the Continuous Output option is 
checked in the multiSlider object’s Inspector.

peak_hold Toggles peak hold mode on and off. When peak hold mode is on, the peak value 
of each slider is represented by a thin line.
254



multiSlider Multiple slider
and scrolling display
peak_reset Resets the current peak values to the current slider values.

quantiles In left inlet: The word quantiles, followed by a list of floats, multiplies each list ele-
ment by the sum of all the values in the multiSlider. This result is then divided by 
215 (32,768). Then, multiSlider sends out the address at which the sum of all val-
ues up to that address is greater than or equal to the result for each list element.

select Selectively sets slider values. For example, select 1 30 2 4 5 50 sets the first slider to 
30, the second to 4, and the fifth slider to 50 (the top or leftmost slider is always 
number 1).

set The word set, followed by a slider number and a value, sets the numbered slider to 
that value without triggering any output.

setborder The word setborder, followed by an integer, is equivalent to the border message, but it 
sets the border draw mode in the multiSlider object’s Inspector panel (accessible 
by choosing Get Info… from the Object menu) in addition to telling the multi-
Slider which of its outside borders to draw. The arguments to border are:

border 0 Draw no borders
border 1 Draw left border
border 2 Draw right border
border 4 Draw top border
border 8 Draw bottom border

As with the border message, any combination of borders can be drawn by adding 
these values. For example, setborder 15 draws all borders. The default is all borders 
drawn (setborder 15).

setcontdata The word setcontdata, followed by a 0 or 1, is equivalent to the cont_data message, 
but it also toggles continuous output mode on and off in the multiSlider object’s 
Inspector panel (accessible by choosing Get Info… from the Object menu) in 
addition to setting the display style. The default is off (setcontdata 0).

setminmax The word setminmax, followed by two floats, sets the low and high range values for 
the multiSlider object. The default values are -1.0 and 1.0.

setpeakhold The word setpeakhold is equivalent to the peak_hold message, but it also toggles peak 
hold mode on and off in the multiSlider object’s Inspector panel (accessible by 
choosing Get Info… from the Object menu) in addition to setting the display 
mode. The default is off (setpeakhold 0).
255



multiSlider Multiple slider
and scrolling display
setstyle The word setstyle, followed by an int in the range 0-5, sets the display style of the 
multiSlider object. The default value is Thin Line (setstyle 0). The display style val-
ues are:

setstyle 0 Thin line
setstyle 1 Bar
setstyle 2 Point Scroll
setstyle 3 Line Scroll
setstyle 4 Reverse Point Scroll
setstyle 5 Reverse Line Scroll

When the display style is set to Thin Line or Bar, each slider displays its current 
value as a thin line. When one of the other (scrolling) display styles is chosen, 
each slider provides a continuously scrolling display of its current and most recent 
past values. (The number of past values shown is determined by the display size 
of the multiSlider, in pixels.)

Note: A scrolling display multiSlider may not be able to update at the rate it 
receives data. This can result in some data points not being displayed.

settype The word settype, followed by a 0 or 1, sets the multiSlider object’s Inspector panel 
(accessible by choosing Get Info… from the Object menu) to enable the object 
for integer (0) or floating point (1) operation, and sets that behavior for the cur-
rently selected object. The default is integer (settype 1).

sum Outputs a sum of all current slider values as a float.

Inspector
The behavior of a multiSlider object is displayed and can be edited using its 
Inspector. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any multiSlider object displays the 
multiSlider Inspector in the floating window. Selecting an object and choosing 
Get Info… from the Object menu or also displays the Inspector.

The multiSlider Inspector lets you set the following attributes:

• Slider Range Minimum and Maximum values. The default Min. value is -1. 
The default Max. value is 1.

• Number of Sliders. The default is 1. You can also choose Integer or Floating 
Point sliders. The default is floating point.

• Slider Style. You can choose Thin line, Bar, Point Scroll, Line Scroll, Reverse 
Point Scroll, or Reverse Line Scroll styles. When the display style is set to Thin 
Line (the default) or Bar, each slider displays its current value as a thin line. 
When one of the other (scrolling) display styles is chosen, each slider pro-
vides a continuously scrolling display of its current and most recent past val-
256



multiSlider Multiple slider
and scrolling display
ues. (The number of past values shown is determined by the display size of 
the multiSlider, in pixels.) You can also select Continuous Data Output and 
Peak Hold display modes (the default is off for both modes).

• Orientation lets you choose horizontal or vertical (default) data display.

• The Draw Borders checkboxes let you specify borders for all four sides of the 
multiSlider object.

• The Color option lets you use a swatch color picker or RGB values to specify 
the Color and Background of the multiSlider object. The default color for the 
sliders is 0 0 0, and the default background color is 255 255 255.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
list When a multiSlider receives a list, int, or float in its inlet, it outputs a list of its cur-

rent values. The list is also sent out when the sliders are changed with the mouse.

Examples

multiSlider drawing styles
257



multiSlider Multiple slider
and scrolling display
See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
matrixctrl Matrix-style switch control
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
258



next Detect logical
separation of messages

259 

Input
anything Messages to be tested to determine whether they are part of the same logical 

event. A logical event is one of the following: a mouse click, the ongoing polling of 
a mouse drag, an event generated by the scheduler (such as the bang from a 
metro), a MIDI event, or a keyboard event. next determines whether the current 
message is part of the same event as the previously received message. For example, 
if you click on a bang twice, the two bangs are not part of the same logical event. 
But if you put bang, bang in a message box, or use the Uzi object to send out two 
bangs in a row, these bangs are part of the same logical event.

Arguments
None.

Output
bang Out left outlet: A bang is sent out if the current message is not part of the same log-

ical event as the previously received message.

Out right outlet: A bang is sent out if the current message is part of the same logical 
event as the previously received message.

Examples

next detects when separate Max messages occur within the same logical event.

See Also

Uzi Send a specific number of bang messages
defer De-prioritize a message 
delay Delay a bang before passing it on
Messages Using the comma in a message box]



notein  Output received
MIDI note messages
Input
(MIDI) notein receives its input from a MIDI note-on or note-off message received from a 

MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming note messages. The word port is 
optional and may be omitted.

(mouse) Double-clicking on a notein object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming note messages. If 

there is no argument, notein receives from all channels on all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to receive note messages. Channel numbers 
greater than 16 will be wrapped around to stay within the 1-16 range.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
int Out left outlet: The number is the pitch value of the incoming note message.

Out 2nd outlet: The number is the velocity of the incoming note-on message if 
non-zero, 0 for a note-off message. To receive release velocity, use xnotein.

If a specific channel number is included in the argument, there are only two out-
lets. If there is no channel number specified by the argument, notein will have a 
third outlet, on the right, which will output the channel number of the incoming 
note message.
 260



notein Output received
MIDI note messages
Examples

Note-on messages can be received from everywhere, a specific port, or a specific port and channel

See Also

ctlin Output received MIDI control values
midiin Output received raw MIDI data
noteout Transmit MIDI note messages
rtin Output received MIDI real time messages
xbendin Interpret extra precision MIDI pitch bend messages
xnotein Interpret MIDI note messages with release velocity
OMS Using Max with OMS
Ports How MIDI ports are specified
Tutorial 12 Sending and receiving MIDI notes
261 



noteout  Transmit MIDI
note messages
Input
int In left inlet: The number is the pitch value of a MIDI note message transmitted on 

the specified channel and port. Numbers are limited between 0 and 127.

In middle inlet: The number is stored as the velocity of a note message, to be used 
with pitch values received in the left inlet. Numbers are limited between 0 and 
127. 0 is considered a note-off message, 1-127 are note-on messages.

In right inlet: The number is stored as the channel number on which to transmit 
the note-on messages.

float Converted to int.

list In left inlet: The first number is used as the pitch, the second number is used as 
the velocity, and the third number is used as the channel, of a transmitted MIDI 
note message.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or a MIDI output device name, 
specifies the port used to transmit the MIDI messages. The word port is optional 
and may be omitted.

(mouse) Double-clicking on a noteout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI note messages. Channel num-

bers greater than 16 received in the right inlet will be wrapped around to stay 
within the 1-16 range. If there is no argument, noteout initially transmits out port 
a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to transmit note messages. Channel numbers 
greater than 16 will be wrapped around to stay within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.
 262



noteout Transmit MIDI
note messages
Output
(MIDI) There are no outlets. The output is a MIDI note-on message transmitted directly 

to the object’s MIDI output port.

Examples

See Also

ctlout Transmit MIDI control messages
midiout Transmit raw MIDI data
notein Output received MIDI note messages
xbendout Format extra precision MIDI pitch bend messages
xnoteout Format MIDI note messages with release velocity
OMS Using Max with OMS
Ports How ports are specified
Tutorial 12 Sending and receiving MIDI notes

Letter argument transmits
to only one port

Otherwise, number specifies
both port and channel
263 



number box Display and
output a number
Input
int or float The number received in the inlet is stored and displayed in the number box and 

sent out the outlet. A float is converted to int by an int number box, and vice versa.

When the active patcher window is locked, numbers can be entered into a number 
box by clicking on it with the mouse and typing in a number on the computer 
keyboard. Typing the Return key or the Enter key, or clicking outside the number 
box, sends the number out the outlet.

Dragging up and down on the number box with the mouse (when the patcher 
window is locked) moves the displayed value up and down, and outputs the new 
values continuously. In the float number box, dragging to the left of the decimal 
point changes the value in increments of 1. Dragging to the right of the decimal 
point changes the fractional part of the number in increments of 0.01.

bang Sends the currently displayed number out the outlet.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values 
for the background color of the number box. The default value is white (brgb 255 255 
255).

color The word color, followed by a number from 0 to 15, sets the background of the 
number box to one of the standard object colors which are also available via the 
Color submenu in the Object menu.

flags The word flags, followed by a number, sets characteristics of the appearance and 
behavior of the number box. The characteristics (which are described on the next 
page, under Arguments) are set by adding together specific numbers to designate 
the desired characteristics, as follows: 4=Bold type, 16=Hexadecimal display, 
32=No triangle, 64=Send on mouse-up only, 128=Can’t change with mouse, 
256=MIDI C3 display, 1024=Roland octal display, 2048=Binary display, 
4096=MIDI C4 display, 8192 =Transparent display mode (useful for display-
ing and editing numbers over other objects). So, for example, flags 180 
(4+16+32+128=180) will set the number box to display its numbers in hexadeci-
mal format, in bold type, with no triangle, and unchangeable by the mouse.

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values 
for the number values displayed by the number box. The default value is black (brgb 
0 0 0).

max The word max, followed by a number, sets the maximum value that can be dis-
played or sent out by the number box. The word max by itself sets the maximum to 
None (removes a prior maximum value constraint).

min The word min, followed by a number, sets the minimum value that can be dis-
played or sent out by the number box. The word min by itself sets the minimum to 
None (removes a prior minimum value constraint).
264



number box Display and
output a number
rgb2 The word brgb, followed by three numbers between 0 and 255, sets the RGB values 
for the number values displayed by the number box when it is highlighted or being 
updated. The default value is black (brgb 0 0 0).

rgb3 The word frgb, followed by three numbers between 0 and 255, sets the RGB values 
for the background color of the number box when it is highlighted or being 
updated. The default value is white (brgb 255 255 255).

set The word set, followed by a number, sets the stored and displayed value to that 
number without triggering output.

(typing) When a number box is highlighted (indicated by a filled-in triangle) in a patcher 
window, numerical keyboard input is sent to the number box to change its value. 
Clicking the mouse or pressing Return or Enter stores a pending typed number.

(Font menu) The font and size of a number box can be altered by selecting it and choosing a dif-
ferent font or size from the Font menu.

Inspector
The behavior of a number box object is displayed and can be edited using its 
Inspector. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any number box object displays the 
number box Inspector in the floating window. Selecting an object and choosing 
Get Info… from the Object menu or also displays the Inspector.

The number box Inspector lets you set the following attributes:

You can set the range for stored, displayed, typed, and passed-through values by 
typing values into the Range Min. and Max. boxes. If the No Min. and No Max. 
checkboxes are checked (the default state), the number box objects will have their 
minimum and maximum values set to “None.” Unchecking these boxes sets the 
minimum and maximum values to 0.

The Options section of the Inspector lets you set the display attributes of the num-
ber box. Other options available in the number box Inspector window are: Bold (to 
display in bold typeface), Draw Triangle (to have an arrow pointing to the num-
ber, giving it a distinctive appearance), Output Only on Mouse-Up (to send a 
number only when the mouse button is released, rather than continuously), Can’t 
Change (to disallow changes with the mouse or the computer keyboard), and 
Transparent (to display only the number in the number box and not the box, so 
that the number box resembles a comment object).

The Display Style pop-up menu lets you select the way that number values are rep-
resented. Decimal is the default method of displaying numbers. Hex shows num-
bers in hexadecimal, useful for MIDI-related applications. Roland Octal shows 
numbers in a format used by some hardware devices where each digit ranges from 
265



number box Display and
output a number
1 to 8; 11 is 0 and 88 is 63. Binary shows numbers as ones and zeroes. MIDI Note 
Names shows numbers according to their MIDI pitch value, with 60 displayed as 
C3. Note Names C4 is the same as MIDI Note Names except that 60 is displayed as 
C4. With all display modes, numbers must be typed in the format in which they 
are displayed.

The Color option lets you use a swatch color picker or RGB values used to display 
the number box and its background in its normal and highlighted forms. Number 
sets the color for the number displayed (default 0 0 0), Background sets the color 
for the number box object itself (default 221 221 221), Highlighted Number sets 
the color of the number display when the number box is selected or its values are 
being updated (default 222 222 222), and Highlighted Background sets the color of 
the number box when it is highlighted or being updated (default 0 0 0).

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int or float The number displayed in the number box is sent out the outlet. Numbers received 

in the inlet or typed on the computer keyboard can exceed the limits of the num-
ber box, but the value that gets stored, displayed, and sent out will automatically be 
limited to the specified range. 

The number box does not resize itself automatically according to the size of the 
number it contains. If the number received is too long to be displayed in the num-
ber box, it is displayed in abbreviated form followed by an ellipsis (…) in the case 
of an int number box, or as a plus sign (+) in the case of a float number box. 

The number is stored and sent out of the number box as usual, despite this abbre-
viated display.
266



number box Display and
output a number
Examples

See Also

float Store a decimal number
int Store an integer value
Tutorial 3 About numbers
Tutorial 10 Number boxes

Displays numbers passing through Can be used to output numbers
267



numkey  Interpret numbers typed
on the computer keyboard
Input
int The number is an ASCII value received from a key or keyup object. When digits 

are typed on the computer keyboard, numkey recognizes the ASCII values and 
interprets them as the numbers being typed.

The keys recognized by numkey are the digits 0-9, the Delete (Backspace) key, 
decimal point (period), Return, and Enter. Digits are combined as a single num-
ber and stored in numkey.

bang Sends the number currently stored in numkey out the left outlet, and resets the 
stored number to 0.

clear Resets the stored number to 0.

Arguments
Optional. A float argument causes numkey to understand the decimal point and 
the fractional part of a number, and send out floats instead of ints. (The argument 
does not, however, set an initial value for numkey. The initial value is always 0.)

Output
int When digits are typed on the computer keyboard, and the ASCII value (from key 

or keyup) is received in the inlet, the digits are combined as a single number and 
stored in numkey. The stored number is sent out the right outlet each time a new 
digit is typed. The Delete key erases the most recently typed digit, and sends the 
stored number out the right outlet. The period key acts as a decimal point and 
causes numkey not to store subsequent digits until a new number is started (unless 
there is a float argument). The Return or Enter key sends the stored number out 
the left outlet and resets the number stored in numkey to 0, so that a new number 
can be typed in.

float When there is a float argument, numkey understands decimal points and frac-
tional parts of a number, and sends out floats instead of ints.

Examples

Recognizes all numbers typed in
 268



numkey Interpret numbers typed
on the computer keyboard
See Also

key Report key presses on the computer keyboard 
keyup Report key releases on the computer keyboard 
number box Display and output a number
Tutorial 20 Using the computer keyboard
269 



 270

offer  Store x,y pairs of
numbers temporarily

Input
list In left inlet: The first number is the x value, and the second number is the y value, 

of an x,y pair to be stored in offer. The first number must be an int; the second 
number may be a float, but will be converted to int.

int In left inlet: The number specifies the x value of an x,y pair. If a y value has been 
received in the right inlet, the two numbers are stored together in offer; otherwise, 
offer looks for an x value that matches the incoming number, sends out the corre-
sponding y value, then deletes the stored pair. If there is no x value stored in offer 
that matches the number received, offer does nothing.

In right inlet: The number specifies a y value to be stored in offer. The next x value 
(int) received in the left inlet causes the two numbers to be stored together as an 
x,y pair.

float In right inlet: Converted to int.

clear In left inlet: Deletes the entire contents of offer.

Arguments
None.

Output
int If the number received in the left inlet matches the x value of an x,y pair stored in 

offer, the corresponding y value is sent out and the stored pair is deleted.

Examples

See Also

coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
table Store and graphically edit an array of numbers

A pair of numbers can be stored, then recalled a single time.



omscontrollers Report controller names
for OMS devices
Input
symbol In left inlet: The name of a MIDI output device, as it appears in the current OMS 

setup. Sends out all continuous controller names known to OMS for that device, 
to be stored in a umenu object.

In left-middle inlet: The name of a MIDI input device, as it appears in the current 
OMS setup. Reports all controller names known to OMS for that device.

generic In left or left-middle inlet: Reports all standardized continuous controller names 
of the MIDI specification.

int In right-middle inlet: Specifies a MIDI channel number on which to look for con-
troller names, for whatever device name is subsequently received in the left or left-
middle inlet.

In right inlet: Indicates a specific patch number, the controller names of which 
will be reported when the device name is received. A patch number input of -1 
tells omscontrollers to look for patch-independent controller names (found in the 
“master” settings on many synths).

symbol + ints In left inlet: If an output device name is followed by one or two numbers, the first 
number is a MIDI channel number, and the second number is a patch number 
(or -1, as described above). An output device name followed by three numbers 
causes omscontrollers to send a single controller name out the right outlet. The 
first number is a MIDI channel number, the second number is a patch number 
(or -1), and the third number is the desired controller number.

In left-middle inlet: Same as in the left inlet, but an input device name is expected.

Arguments
int Optional: The first argument specifies a MIDI channel number on which to look 

for controller names, for whatever device name is received in the left or left-mid-
dle inlet. The second argument identifies a specific patch number, the controller 
names of which will be reported when the device name is received. A patch num-
ber argument of -1 tells omscontrollers to look for patch-independent controller 
names. If arguments are not present, omscontrollers reports patch-independent 
controller names from channel 1.

Output
clear Out left outlet: In response to a device name received in the left or left-middle 

inlet, omscontrollers first sends out a clear message to clear all items from the 
receiving umenu.
271 



omscontrollers  Report controller names
for OMS devices
append Out left outlet: Immediately after sending the clear message, omscontrollers sends 
an append message for each controller name of the specified device (and channel), 
to set the items of a connected umenu object. Note that there will almost invari-
ably be 128 controller names sent out (one for each possible continuous controller 
number), so the receiving umenu should be capable of holding that many items. 
(That is, you should type a number 128 or greater in the Maximum Items box in 
the Inspector window of the receiving umenu object.)

symbol Out right outlet: Sends out a single controller name upon receiving a specific mes-
sage of device name, MIDI channel, patch number, and controller number.

Examples

Fill a menu with controller names for a device... or report a single name

See Also

omsinfo Set pop-up menu with names of OMS devices
omsnotes Report note names for OMS devices
omspatches Report patch names for OMS devices
OMS Using Max with OMS
Ports How MIDI ports are specified
 272



omsinfo Set pop-up menu with
names of OMS devices
Input
int In left inlet: Causes omsinfo to send out a series of messages containing the names 

of the current OMS output devices. Those messages can be used to set the indi-
vidual items of a pop-up umenu object connected to the omsinfo object’s outlet. 
The number received in the omsinfo object’s left inlet is then sent in a set message 
to set the currently displayed menu item.

In right inlet: Causes omsinfo to send out a series of messages containing the 
names of the current OMS input devices. Those messages can be used to set the 
individual items of a pop-up umenu object connected to the omsinfo object’s out-
let. The number received in the omsinfo object’s left inlet is then sent in a set mes-
sage to set the currently displayed umenu item, unless the number is less than zero, 
in which case no set message is sent.

bang In left inlet: Same as int, but doesn’t send a set message after setting the umenu 
items. The equivalent message to bang for retrieving input device names is -1 in the 
right inlet.

controllers In left inlet: Causes omsinfo to send out a series of messages containing the names 
of all MIDI controllers (devices that transmit MIDI) in the current OMS setup. 
Those messages can be used to set the individual items of a pop-up umenu object 
connected to the omsinfo object’s outlet. The word controllers may be followed by a 
number, which sets the pop-up umenu to that item number after the menu items 
have been created.

Arguments
None.

Output
clear omsinfo first sends a clear message out its outlet to clear all the receiving umenu 

object’s items.

append Immediately after sending the clear message, omsinfo sends an append message for 
each OMS input or output device name, to set the items of a connected umenu 
object. The device names will be sent out in the order in which they appear in 
Max’s MIDI Setup dialog box.

set If the incoming message to omsinfo is an integer greater than or equal to zero, a set 
message is sent after the append messages, to set the currently displayed menu 
item.
273 



omsinfo  Set pop-up menu with
names of OMS devices
Examples

See Also

omscontrollers Report controller names for OMS devices
omsinfo Set pop-up menu with names of OMS devices
omsnotes Report note names for OMS devices
omspatches Report patch names for OMS devices
umenu Pop-up menu to display and send commands
OMS Using Max with OMS
Ports How MIDI ports are specified

Get output device names for MIDI output objects …and for MIDI input objects
 274



omsnotes Report note names
for OMS devices
Input
symbol In left inlet: The name of a MIDI output device, as it appears in the current OMS 

setup. Reports all note names on a particular MIDI channel for that device, to be 
stored in a umenu object.

In left-middle inlet: The name of a MIDI input device, as it appears in the current 
OMS setup. Reports all note names on a particular MIDI channel for that device.

int In right-middle inlet: Specifies a MIDI channel number on which to look for note 
names, for whatever device name is subsequently received in the left or left-mid-
dle inlet.

In right inlet: Indicates a specific patch number, for which to report note names 
when the device name is received. A patch number input of -1 tells omsnotes to 
report patch-independent note names.

symbol + ints In left inlet: If an output device name is followed by one or two numbers, the first 
number is a MIDI channel number, and the second number is a patch number 
(or -1, as described above). An output device name followed by three numbers 
causes omsnotes to send a single note name out the right outlet. The first number 
is a MIDI channel number, the second number is a patch number (or -1), and the 
third number is the desired note number.

In left-middle inlet: Same as in the left inlet, but an input device name is expected.

Arguments
int Optional: The first argument specifies a MIDI channel number on which to look 

for note names, for whatever device name is received in the left or left-middle 
inlet. The second argument identifies a specific patch number, the note names of 
which will be reported when the device name is received. A patch number argu-
ment of -1 tells omsnotes to look for patch-independent note names.

Output
clear Out left outlet: In response to a device name received in the left or left-middle 

inlet, omsnotes first sends out a clear message to clear all items from the receiving 
umenu.

append Out left outlet: Immediately after sending the clear message, omsnotes sends an 
append message for each note name of the specified device and channel, to set the 
items of a connected umenu object. Note that there will be 128 note names sent 
out (one for each possible note number), so the receiving umenu should be capa-
ble of holding that many items. (That is, you should type a number 128 or greater 
in the Maximum Items box in the Inspector of the receiving umenu object.) There 
275 



omsnotes  Report note names
for OMS devices
may be many empty menu items, however, since many notes may have been given 
no name.

symbol Out right outlet: Sends out a single note name upon receiving a specific message 
of device name, MIDI channel, patch number, and note number.

Examples

Fill a menu with note names for a device, then use the menu to display or select notes

See Also

omscontrollers Report controller names for OMS devices
omsinfo Set pop-up menu with names of OMS devices
omspatches Report patch names for OMS devices
OMS Using Max with OMS
Ports How MIDI ports are specified
 276



omspatches Report patch names
for OMS devices
Input
symbol In left inlet: The name of a MIDI output device, as it appears in the current OMS 

setup. Reports all patch names for that device, to be stored in a umenu object.

In middle inlet: The name of a MIDI input device, as it appears in the current 
OMS setup. Reports all patch names for that device.

int In right inlet: Specifies a MIDI channel number on which to look for patch 
names, for whatever device name is subsequently received in the left or left-mid-
dle inlet.

symbol + ints In left inlet: If an output device name is followed by a number, the number is a 
MIDI channel number on which to look for patch names for that device. An out-
put device name followed by two numbers causes omspatches to send a single 
patch name out the right outlet; the first number is a MIDI channel number, and 
the second number is a patch number.

In middle inlet: Same as in the left inlet, but an input device name is expected.

Arguments
int Optional: Specifies a MIDI channel number on which to look for patch names, 

for whatever device name is received in the left or middle inlet.

Output
clear Out left outlet: In response to a device name received in the left or middle inlet, 

omspatches first sends out a clear message to clear all items from the receiving 
umenu.

append Out left outlet: Immediately after sending the clear message, omspatches sends an 
append message for each patch name of the specified device (and channel), to set 
the items of a connected umenu object. The receiving umenu should be capable of 
holding as many items as there are patches in a bank of sounds for a given synth. 
(That is, in the Maximum Items box in the Inspector of the receiving umenu 
object, you should type a number equal to or greater than the number of patch 
names it is likely to receive.)

symbol Out right outlet: Sends out a single patch name upon receiving a specific message 
of device name, MIDI channel, and patch number.
277 



omspatches  Report patch names
for OMS devices
Examples

Fill a menu with patch names for a device... or report a single name

See Also

omscontrollers Report controller names for OMS devices
omsinfo Set pop-up menu with names of OMS devices
omsnotes Report note names for OMS devices
OMS Using Max with OMS
Ports How MIDI ports are specified
 278



onebang Traffic control for
bang messages

279 

Input
bang In left inlet: Causes a bang to be sent out only if a bang has been received in the right 

inlet since the last bang was sent out.

In right inlet: Resets onebang to permit a bang to be sent out the next time a bang is 
received in the left inlet.

Arguments
int Optional. A non-zero argument sets onebang to permit a bang to be sent out the 

first time a bang is received in the left inlet. 

Output
bang When onebang receives a bang in its left inlet, it sends a bang out its outlet only if it 

has received a bang in its right inlet since the last time it sent out a bang.

Examples 

Allow just one of (potentially) many bangs

See Also

gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
speedlim Limit the speed with which messages can pass through

detect (only) the 
first note played

onebang 1

notein a 1

stripnote

reset
onebang

metro 10000

no more than one 
bang gets through 
every 10 seconds



 280

onecopy  Prevent multiple copies of
the same patcher from being opened

Use the onecopy object inside a patcher that you want to place in the extras folder for inclusion in 
the Extras menu. When the patcher's name is chosen using the Extras menu, its window will be 
brought to the front instead of opened a second time if it has already been loaded. The patch will 
be loaded if it is not currently open. The onecopy object cooperates with the Extras menu to ensure 
that only one copy of the patcher is opened at a time. However, opening the patcher containing a 
onecopy object by choosing Open... from the File menu will open additional copies.

Input
None.

Arguments
None.

Output
None.

Example

use onecopy to prevent multiple copies of the same patch from being opened fromthe Extras menu

See Also

thispatcher Send messages to a patcher
pcontrol Open and close subwindows within a patcher



opendialog Open a dialog to
ask for a file or folder
Input
bang Opens a standard Open Document dialog box for choosing a file. 

set The word set, followed by a four-letter symbol (e.g., TEXT, maxb) which specifies a 
file type, sets the opendialog object to search for the designated file type when 
opening the dialog box.

sound Sets opendialog to list audio files (AIFF, Sound Designer II, NeXT/Sun, and WAV, 
along with some generic data file types).

types The word types, followed by one or more type codes of up to four characters, 
determines which file types are listed by the opendialog object. Example type 
codes for Macintosh files are TEXT for text files, maxb for Max binary format patcher 
files, and AIFF for AIFF format audio files. types with no arguments makes the 
object accept all file types, which is the default setting.

any symbol One or more symbols are interpreted as one or more type codes used to deter-
mine which files are listed by the opendialog object.

Arguments
fold Optional. Sets opendialog to choose folders instead of files.

sound Optional. Sets opendialog to list audio files (AIFF, Sound Designer II, NeXT/Sun, 
and WAV, along with some generic data file types). The QuickTime appendix lists 
all the files that can be opened.

any symbol Optional. One or more symbols set the list of file types that determine which files 
are listed by the opendialog object.

Output
symbol Out left outlet: The complete pathname of the file chosen by the user as a symbol. 

A full pathname looks like this:

 ’MyDisk:Max Folder:extras:filename’

bang If the dialog box is cancelled by the user, a bang message is sent out the right outlet.
281 



opendialog  Open a dialog to
ask for a file or folder
Examples

Look for folders or a certain kind of file 

See Also

dialog Open a dialog box for text entry
dropfile Define a region for dragging and dropping a file
date Report current date and time 
filedate Report the modification date of a file
filein Read in a file of binary data
filepath Report information about the current search path
folder List the files in a specific folder
opendialog Open a dialog to ask for a file or folder for saving
strippath Get filename from a full pathname
 282



outlet Send messages
out of a patcher
Input
(patcher) Each outlet object in a patch will show up as an outlet at the bottom of an object 

box when the patcher is used inside another patcher (as an object or a subpatch). 
Messages received in the outlet object in the subpatch will come out of corre-
sponding outlet in the subpatch’s object box in the patcher that contains it.

Inspector
A descriptive Assistance message can be assigned to an outlet object and can be 
edited using its Inspector. If you have enabled the floating inspector by choosing 
Show Floating Inspector from the Windows menu, selecting any outlet object 
displays the outlet Inspector in the floating window. Selecting an object and 
choosing Get Info… from the Object menu or also displays the Inspector.

Typing in the Describe Outlet text area specifies the content of the Assistance mes-
sage.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
anything Any messages received by outlet in a subpatch are sent out the outlet of that sub-

patch, through patch cords.

Examples

Outlets of the subpatch object correspond to the outlet objects inside the subpatch
283



outlet Send messages
out of a patcher
See Also

bpatcher Embed a visible subpatch inside a box
forward Send remote messages to a variety of objects
inlet Receive messages from outside a patcher
patcher Create a subpatch within a patch
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 26 The patcher object
284



oval Draw solid oval in
a graphic window
Input
bang In left inlet: Draws the oval using the current screen coordinates, drawing mode, 

and color.

int In left inlet: Sets the left screen coordinate of the oval and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the oval.

In 3rd inlet: Sets the right screen coordinate of the oval.

In 4th inlet: Sets the bottom screen coordinate of the oval.

In 5th inlet: Sets the drawing mode of the oval. Sets the drawing mode of the oval. 
The following are drawing mode constants; not all modes will be available on all 
operating systems.

Copy 0 blend 32

Or 1 addPin 33

Xor 2 addOver 34

Bic 3 subPin 35

NotCopy 4 transparent 36

NotOr 5 adMax 37

NotXor 6 subOver 38

NotBic 7 adMin 39

In 6th (right) inlet: Sets the palette index (color) of the oval according to the 
graphics window’s current palette. This setting has no effect when the monitor is 
in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the 
RGB values for the color of the oval the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets an oval 
object’s sprite priority in its graphics window. Objects with lower priority will 
draw behind those with a higher priority.

Arguments
any symbol Obligatory. The first argument to oval must be the name of a graphics window 

into which the oval will be drawn. The window need not exist at the time the oval 
object is created, but the oval will not be drawn unless the name matches that of 
an existing and visible window.

int Optional. Sets the initial sprite priority of the oval. If no priority is specified, the 
default is 3.
285 



oval  Draw solid oval in
a graphic window
Output
(visual) When the oval object’s associated graphics window is visible, and a bang message 

or a number is received in its left inlet, a shape is drawn in the window, and the 
object’s previously drawn oval (if any) is erased.

Examples

The oval object on the right will appear to pass in front of the one on the left
when both move across the screen, since it has a higher sprite priority

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
 286



pack Combine numbers and
symbols into a list
Input
int The number is stored in pack as an item in a list, with its position in the list corre-

sponding to the inlet in which it was received. A number in the left inlet is stored 
as the first item in the list, and causes the entire list to be sent out the outlet. If the 
inlet in which the number is received has been initialized with a float or symbol 
argument, the incoming number will be converted to a float or a blank symbol, 
respectively.

float The number is stored in pack as an item in a list, with its position in the list corre-
sponding to the inlet in which it was received. A number in the left inlet is stored 
as the first item in the list, and causes the entire list to be sent out the outlet. If the 
inlet in which the number is received has been initialized with an int or symbol 
argument, the incoming number will be converted to an int or a (blank) symbol, 
respectively. If no argument has been typed in, float is converted to int.

bang In left inlet: Causes pack to send out a list of the items currently stored.

any symbol If the inlet in which the symbol is received has been initialized with a symbol 
argument, the symbol is stored in the corresponding location in pack. Otherwise, 
the symbol is converted to 0 before being stored. A symbol in the left inlet triggers 
output of the pack object’s contents.

list Any multi-item message, regardless of whether it begins with a number, is treated 
as a list by pack. The first item in the incoming list is stored in pack in the location 
that corresponds to the inlet in which it was received, and each subsequent item is 
stored as if it had arrived in subsequent inlets (limited by the number of inlets 
available). A list received in the left inlet causes the entire stored list to be sent out 
the outlet.

set The word set, followed by any message, allows that message to be received by pack 
without triggering any output. Although a set message may be received in any 
inlet, it is only meaningful in the left inlet, which is the only triggering inlet. In 
any other inlet, the word set is ignored and the rest of the message is used as nor-
mal.

nth The word nth, followed by the number of an inlet (starting at 1 for the leftmost 
inlet), causes the value of the item stored at that location in pack to be sent out the 
outlet.

send In left inlet: The word send, followed by the name of a receive object, sends a list of 
the currently stored items to all receive objects with that name, instead of out pack 
object’s outlet.
287 



pack  Combine numbers and
symbols into a list
Arguments
int, float, symbol Optional. The number of inlets is determined by the number of arguments. Each 

argument sets an initial type and value for an item in the list stored by pack. If a 
number argument contains a decimal point, that item will be stored as a float. If 
the argument is a symbol, that item will be stored as a symbol. If there is no argu-
ment, there will be two inlets, and the two list items will be set to (int) 0 initially. 
Note: Typing a list into an object box automatically identifies it as a pack object, so 
you may omit the word pack from the object box, provided that you type in a list 
of arguments (that has at least two items and begins with a number).

Output
list The length of the list is determined by the number of arguments. When input is 

received in the left inlet, the stored list is sent out the outlet.

int, float, symbol When the nth message is received, the value of the specified item is sent out.

Examples

Numbers and symbols may be mixed as needed in pack

See Also

bondo Synchronize a group of messages 
buddy Synchronize arriving data, output them together 
match Look for a series of numbers, output it as a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
unpack Break a list up into individual messages
zl Multi-purpose list processor
Tutorial 30 Number groups
 288



panel Colored background area
The panel object lets you create rectangular background panels for use in creating user interfaces. 
You can also create rectangles with rounded corners and shading which can also be used as but-
tons when used in conjunction with ubutton object.

Input
border The word border, followed by a number, sets the size, in pixels of the panel object’s 

border. The default is 1.

brgb The word brgb, followed by three numbers between 0 and 255, sets the RGB values 
for the color (Background) of the panel object. The default value is gray (brgb 192 
192 192).

frgb The word frgb, followed by three numbers between 0 and 255, sets the RGB values 
for the border of the panel object. The default value is black (frgb 0 0 0).

rounded The word rounded, followed by a number, sets the size, in pixels of the rounding of 
the panel object’s corners. The default is 0 (no rounding).

shadow The word rounded, followed by a positive or negative number, sets the size, in pixels 
for a “shadow” effect for the panel object. Positive numbers create a “raised” 
shadow effect, and negative numbers created a “recessed” effect. The default is 0 
(no shadow).

size The word size, followed by two numbers, specifies the width and height, in pixels, 
of the panel object. The default panel size has a width of 69 and a height of 57. 

Inspector
The behavior of a panel object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any panel object displays the panel Inspector 
in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The Width and Height number boxes are used to set the size of the panel. The 
default panel size has a width of 69 and a height of 57. Border Size specifies the 
width, in pixels of the panel border. The default is 1. Entering a value in the 
Shadow Size number box sets the size of the panel’s shadow. The default is 0 (no 
shadow). The number, of pixels, worth of rounding for the panel is specified by 
entering a number into the Rounded Corners box. The default is 0 (no rounding).

The Color option lets you use a swatch color picker or RGB values used to set the 
border color and the frame color. Frame sets the color for the border of the   panel 
object (default 0 0 0), and Background sets the color for the panel (default 192 192 
192).
289



panel Colored background area
 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output

None.

Examples

See Also

fpic Display a picture from a graphics file
lcd Draw graphics in a patcher window
pics Animation in a graphic window
pict Draw picture in a graphic window
ubutton Transparent button, sends a bang
290



past Report when input increases
beyond a certain number
Input
list The numbers in the list are compared to the arguments. If all of the numbers in 

the list are greater than or equal to the corresponding arguments, a bang is sent out 
the outlet. Before a bang is sent again, however, past must receive a clear message, or 
must receive another list in which the number that equaled or exceeded its argu-
ment goes back below (is less than) its argument.

int If there is only one argument, and the input is greater than or equal to it, and the 
previous input was not greater than or equal to it, past sends a bang out the outlet.

float Converted to int.

clear Causes past to forget previously received input, readying it to send a bang mes-
sageagain.

set The word set, followed by one or more numbers, sets the numbers which must be 
equaled or exceeded by the numbers received in the past object’s inlet.

Arguments
list Sets the numbers which must be equaled or exceeded by the numbers received in 

the inlet.

int Sets a single number which must be equaled or exceeded by the number received 
in the inlet. 

Output
bang If all of the arguments are equaled or exceeded by the numbers received in the 

inlet, past sends out a bang. Otherwise, past does nothing. A bang is sent only as a 
number increases past its threshold. Once the threshold has been passed, the 
number must go below the threshold again, then increase past it, before another 
bang will be sent.

Examples

Send out bang only when the input goes past the threshold in an upward direction
291 



past  Report when input increases
beyond a certain number
See Also

cd Control playback of audio CDs
timein Report time from external time code source
maximum Output the greatest in a list of numbers
Peak If a number is greater than previous numbers, output it
> Is greater than, comparison of two numbers
 292



patcher / p Create a subpatch
within a patch
Input
anything The number of inlets in a patcher object is determined by the number of inlet 

objects contained within its subpatch window.

Arguments
any symbol(s) Optional. The subpatch can be given a name by the argument, so that its name 

appears in the title bar of the subpatch window. The name in the title bar of the 
subpatch window is displayed in brackets to indicate that it is part of another file. 
If there is no argument typed in, the subpatch window is named [sub patch]. Differ-
ent patcher objects that share the same name are still distinct subpatches, and do 
not share the same contents. 

Output
anything The number of outlets a patcher object has is determined by the number of outlet 

objects contained within the subpatch window. Output can also be sent via send 
and value objects contained in the subpatch. The actual messages sent out of a 
patcher object depend on the contents of the subpatch.

When a patcher object is first created, the subpatch window is automatically 
opened for editing. To view or edit the contents of a patcher object (or any sub-
patch object) later on, double-click on the object when the patcher window is 
locked.

All the objects in a subpatch of a patcher object are saved as part of the patcher 
which contains the object. 

Examples

A patch can be contained (and saved) as part of another patch
293 



patcher / p  Create a subpatch
within a patch
See Also

bpatcher Embed a visible subpatch inside a box
inlet Receive messages from outside a patcher
outlet Send messages out of a patcher
pcontrol Open and close subwindows within a patcher
thispatcher Send messages to a patcher
Tutorial 26 The patcher object
 294



pcontrol Open and close subwindows
within a patcher
Input
open Opens the patcher window of any subpatches or patcher objects connected to the 

pcontrol object’s outlet.

close Closes the patcher window of any subpatches or patcher objects connected to the 
pcontrol object’s outlet.

enable The word enable, followed by any number other than 0, enables the MIDI objects 
contained in the subpatches or patcher objects connected to the pcontrol object’s 
outlet. A message of enable 0 disables the MIDI objects in those subpatches.

load The word load, followed by the name of a patcher file, opens that file if it can be 
found in Max’s search path. The file name may optionally be followed by up to 
nine numbers and/or symbols, which will be substituted for the appropriate 
changeable # arguments (#1 to #9) in the patch being opened.

shroud The word shroud, followed by the name of a patcher file, opens that file but does not 
show its window. (Use this message with care, since having patchers open but 
invisible can potentially lead to some disconcerting results.)

help The word help, followed by a symbol, opens a help file in Max’s Help Directory 
with the name of the symbol followed by .help.

Arguments
None. 

Output
Any subpatches or patcher objects connected to the pcontrol object’s outlet can 
have their patcher window opened or closed, or MIDI enabled/disabled, when 
the appropriate message is received in the inlet of pcontrol.

Examples

Show/hide a subpatch window, or enable/disable its MIDI objects
295 



pcontrol  Open and close subwindows
within a patcher
See Also

bpatcher Embed a visible subpatch inside a box
inlet Receive messages from outside a patcher
patcher Create a subpatch within a patch
thispatcher Send messages to a patcher
Tutorial 40 Automatic actions
 296



Peak If a number is greater than
previous numbers, output it
Input
int In left inlet: If the input is greater than the value currently stored in Peak, it is 

stored as the new peak value and is sent out.

In right inlet: The number is stored in Peak as the new peak value, and is sent out.

float Converted to int.

list In left inlet: The second number is stored as the new peak value and is sent out, 
then the first number is received in the left inlet.

bang In left inlet: Sends the currently stored peak value out the left outlet.

Arguments
None. The initial value stored in Peak is 0. 

Output
int Out left outlet: New peak values are sent out. (A number received in the right inlet 

is always the new peak value.)

Out middle outlet: If the number received is a new peak value, the output is 1. If 
the number received in the left inlet is not a new peak value, the output is 0.

Out right outlet: If the number received is a new peak value, the output is 0. If the 
number received in the left inlet is not a new peak value, the output is 1.

Examples

Find the greatest in a series of numbers A number in the right inlet
always sets a new peak
297 



Peak  If a number is greater than
previous numbers, output it
See Also

maximum Output the greatest in a list of numbers
past Report when input increases beyond a certain number
Trough If a number is less than previous numbers, output it
> Is greater than, comparison of two numbers
 298



pgmin Output received
MIDI program change values
Input
(MIDI) pgmin receives its input from a MIDI program change message received from a 

MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming program change messages. The 
word port is optional and may be omitted.

int The number is treated as if it were an incoming MIDI program change value. If 
there is a right outlet, 0 is sent out in lieu of a MIDI channel number. The program 
number plus 1 is sent out the left outlet, and is not limited in the range 1 to 128. 

Arguments
a-z Optional. Specifies the port from which to receive incoming program change 

messages. If there is no argument, pgmin receives from all channels on all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to receive program change messages. Channel 
numbers greater than 16 will be wrapped around to stay within the 1-16 range.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
int If a specific channel number is included in the argument, there is only one outlet. 

The output is the incoming program number on the specified channel and port. 
Note: The pgmin object always adds 1 to the incoming program number. Thus, 
an incoming program change value of 32 will come out the outlet of pgmin as 33.

If there is no channel number specified by the argument, pgmin will have a second 
outlet, on the right, which will output the channel number of the incoming pro-
gram change message.
299 



pgmin  Output received
MIDI program change values
Examples

Program changes can be received from everywhere,
a specific port, or a specific port and channel

See Also

midiin Output received raw MIDI data
pgmout Transmit MIDI program change messages
Tutorial 16 More MIDI ins and outs
Ports How MIDI ports are specified
 300



pgmout Transmit MIDI program
change messages
Input
int In left inlet: The number has 1 subtracted from it and then is transmitted as a pro-

gram change value on the specified channel and port. Numbers are limited 
between 1 and 128, and are sent out as program changes 0 to 127.

In right inlet: The number is stored as the channel number on which to transmit 
the program change messages.

float Converted to int.

list In left inlet: The first number is the program number +1, and the second number 
is the channel, of a MIDI program change message, transmitted on the specified 
channel and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, 
even if the entire patcher window has had its MIDI disabled by the MIDI Enable/
Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or a MIDI output device name, specifies the 
port used to transmit the MIDI messages. The word port is optional and may be 
omitted.

Arguments
a-z Optional. Specifies the port for transmitting MIDI program change messages. 

When a letter argument is present, channel numbers greater than 16 received in 
the right inlet will be wrapped around to stay within the 1-16 range. If there is no 
argument, pgmout initially transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to transmit program change messages. Channel 
numbers greater than 16 will be wrapped around to stay within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
(MIDI) There are no outlets. The output is a MIDI program change message transmitted 

directly to the object’s MIDI output port.
301 



pgmout  Transmit MIDI program
change messages
Examples

Letter argument transmits to only one port. Otherwise, number specifies both port and channel

See Also

midiout Transmit raw MIDI data
pgmin Output received MIDI program change values
Tutorial 16 More MIDI ins and outs
Ports How MIDI ports are specified
 302



pics Animation in
a graphic window
Input
int In left inlet: Draws the specified frame number if the object’s associated graphics 

window is visible. In a pics object, the first frame number is always 0. In addition, 
the “next frame” pointer is set to the frame number drawn, so that a subsequent 
bang message will draw the next frame.

In middle inlet: Sets the left edge of the image, in pixels, relative to the left edge of 
the graphics window (effective the next time a frame is drawn).

In right inlet: Sets the top edge of the image, in pixels, relative to the top edge of 
the graphics window’s drawing area (effective the next time a frame is drawn).

bang Draws the next frame. pics will cycle back to the first frame after drawing its last 
frame.

priority The word priority, followed by a number greater than 0, sets the object’s sprite prior-
ity to that number. Refer to the Graphics section of the Tutorials and Topics man-
ual for a discussion of sprite priorities.

Arguments
pics2 Optional. If the object is created as pics2, the first frame is taken to be a back-

ground frame which is not erased by subsequent frames. Since the PICS file for-
mat is ambiguous on what the first frame does, you should try creating the object 
as pics2 if you don’t get the proper results with pics. 

symbol Obligatory. The first argument to pics must be the name of a graphic object whose 
window will be used to draw the animation. The second argument must be the 
name of a file in PICS format which will be loaded when the object is created. 
Note that the size of PICS files is often quite large, and loading the file may take a 
while.

int Optional. Following the window name and file name, a number greater than 0 
sets the initial sprite priority. The default priority is 3.

Output
(visual) When the pics object’s associated graphics window is visible, and a bang message 

or a number is received in its inlet, a frame of the PICS file is drawn in the win-
dow, and the object’s previously drawn frame (if any) is erased (unless the object 
was created as pics2, in which case the first frame always stays on the screen).
303 



pics  Animation in
a graphic window
Examples

A metro object an be used to cycle through a PICS file at a constant speed.

See Also

graphic Window for drawing sprite-based graphics
pict Draw picture in a graphic window
Graphics Overview of graphics windows and objects
 304



pict Draw picture in
a graphic window
Input
bang Draws the picture stored in the pict object if its associated graphics window is vis-

ible.

clear Erases the picture drawn in the graphics window.

int In left inlet: A nonzero number draws the picture in its associated graphics win-
dow if that window is visible. 0 erases the picture.

In middle inlet: Sets the left edge of the picture, in pixels, relative to the left edge of 
the graphics window (effective the next time the picture is drawn).

In right inlet: Sets the top edge of the picture, in pixels, relative to the top edge of 
the graphics window’s drawing area (effective the next time the picture is drawn). 

priority The word priority, followed by a number greater than or equal to 0, sets the object’s 
sprite priority to that number. Refer to the Graphics section of the Tutorials and 
Topics manual for a discussion of sprite priorities.

Arguments
symbol Obligatory. The first argument to pict must be the name of a graphic object whose 

window will be used to draw the picture. The second argument must be the name 
of a graphics file which will be loaded when the object is created.

int Optional. Following the window name and file name, a number greater than or 
equal to 0 sets the initial sprite priority. The default priority is 0, which means the 
picture will be drawn behind all other objects. Following the priority number, the 
next two arguments specify the left and top offsets of the image, in pixels, relative 
to the top left corner of the graphics window’s drawing area.

Output
(visual) When the pict object’s associated graphics window is visible, and a bang message 

or a nonzero int is received in its inlet, the stored picture is drawn in the window.

Examples

Picture can be displayed or moved around in the graphics window
305 



pict  Draw picture in
a graphic window
See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
pics Animation in a graphic window
rect Draw solid rectangle in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
Tutorial 42 Graphics
 306



pictctrl Picture-based
control
The pictctrl object is a user interface object for creating buttons, switches, knobs, and other con-
trols. It can open PICT files and, if QuickTime is installed, other picture file formats that are listed 
in the QuickTime appendix.Since the pictctrl object uses images from a picture file for its appear-
ance, you can create controls with whatever appearance you desire. 

Input
int Sets the value of the button or knob set by the control, and sends the current value 

out the outlet. In button and toggle mode, the value must be either 0 or 1. In dial 
mode, the range of values is determined by pictctrl object’s Range attribute. 

set The word set, followed by a number, sets the value of the button or knob to that 
number, without triggering output.

bang Sends the current value of the pictctrl to the outlet.

clickincrement The word clickincrement, followed by a nonzero value, sets the output value to incre-
ment by 1 each time the object is clicked (Click to Increment mode). Any move-
ment of the mouse after clicking is ignored. When the uppermost value is 
reached, the value returns to zero with the next click. All other mouse tracking 
modes are disabled. clickincrement 0 disables Click to Increment mode.

clickedimage The word clickedimage, followed by a nonzero value, tells the pictctrl object to use 
an alternate set of image frames in your picture file to give the dial a different 
appearance when the user clicks on it and drags the mouse pointer. clickedimage 0 
disables this feature.

picture The word picture, followed by a symbol that specifies a filename, designates the 
picture file that the pictctrl object will use for the control’s button or dial file. The 
symbol used as a filename must either be the name of a file in Max’s current search 
path, or a complete pathname for the file (e.g. ‘MyDisk:Documents:UI Pictures:Cool-
Knob.pct’).

active The word active, followed by a 0 or 1, toggles mouse control of the pictctrl object. 
The default is 1 (enabled). If a separate set of inactive images is present in the  
pictctrl object’s picture file and if the inactive images attribute is set, the active mes-
sage will also change the appearance of the control.

inactiveimage The word inactiveimage, followed by a nonzero value, tells the pictctrl object that 
your picture file has an additional row of images for its inactive state. The default 
is 0 (no inactive state).

imagemask The word imagemask, followed by a nonzero value, tells the pictctrl object that your 
picture file has an image mask. The default is 0 (no image mask).

soundfx The word soundfx, followed by a 0 or 1, toggles the use of the Appearance sounds 
available in Mac OS 8.5 and newer. soundfx 0 turns the sounds off.
307



pictctrl Picture-based
control
tracking The word tracking, followed by a 0 or 1, toggles live tracking. If live tracking is on, 
the pictctrl object will change its state if the mouse moves in and out of the rectan-
gular border of the object with the mouse button held down. tracking 0 disables live 
tracking

range The word range, followed by a number, sets the range of the pictctrl object when it 
is in dial mode. The default value is 128.

offset The word offset, followed by a number, sets an offset value. When pictctrl is in dial 
mode, the offset value is added to the object's value before being sent out the out-
let. The default offset value is 0.

multiplier The word multiplier, followed by a number, specifies a multiplier value. When pictc-
trl is in dial mode, the object's value is multiplied by this number before being 
sent out the outlet. The multiplication happens before the addition of the Offset 
value. The default multiplier value is 1.

frames The word frames, followed by a number, specifies the number of images (columns) 
in the picture file. The number of frames does not have to be the same as the range 
of the control; the pictctrl object will use the nearest image for any given value.

trackhorizontal The word trackhorizontal, followed by a nonzero value, sets the pictctrl object to 
respond when you click on it and drag the mouse horizontally; moving the 
mouse to the right increases the object’s value, and moving it to the left decreases 
the value. Enabling this mode of operation disables the Circular Tracking and Click 
to Increment modes (see the clickincrement and trackcircular messages).

trackvertical The word trackvertical, followed by a nonzero value, sets the pictctrl object to 
respond when you click on it and drag the mouse vertically; moving the mouse 
up increases the object’s value, and moving it down decreases the value. Enabling 
this mode of operation disables the Circular Tracking and Click to Increment 
modes (see the clickincrement and trackcircular messages). 

trackcircular The word trackcircular, followed by a nonzero value, sets the pictctrl object to 
respond when you click on it and drag the mouse in a circular arc relative to the 
control's center (Circular Tracking mode). Moving the mouse clockwise increases 
the control’s value, and moving it counterclockwise decreases its value. Enabling 
circular tracking disables all other tracking modes. trackcircular 0 disables circular 
tracking.

ratio The word ratio, followed by a number, specifies how many pixels the mouse 
pointer must move before the value of the dial changes by one increment. If the 
pictctrl object is using Circular Tracking, the ratio message specifies how many 
degrees the cursor must move, relative to the center of the object, to increase the 
value by one.
308



pictctrl Picture-based
control
Inspector
The behavior of a pictctrl object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any pictctrl object displays the pictctrl Inspec-
tor in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

Some of the pictctrl object’s attributes are associated with one of the three modes 
of this object—Button Mode, Toggle Mode, and Dial Mode. The pictctrl Inspector 
lets you set the following attributes:

Button mode imitates the behavior of simple buttons in graphical user interfaces, 
such as the “OK” and “Cancel” buttons found in dialog boxes. In this mode, the 
pictctrl object outputs a 1 when the user clicks on the object, and a 0 when the user 
either moves the mouse off of the object or releases the mouse button. Button 
mode is also useful for display objects, such as simulated LEDs and status indica-
tors. 

Toggle mode is similar to button mode, except that the object changes state from 0 
to 1 (or 1 to 0) with every mouse click. Toggle mode imitates the behavior of 
check boxes. 

Checking Live Tracking can only be done if you’re using the pictctrl object’s button 
mode. If this checkbox is checked, pictctrl will change state if the mouse moves in 
and out of the rectangular border of the object with the mouse button held down.

Dial mode can be used to create controls that act like knobs, or any other control 
that has more than two distinct values. (You could use dial mode to create sliders, 
but the pictslider object is better suited to this task.) Dial mode lets you set a range, 
offset, and multiplier for its values, just as with Max’s hslider, uslider, and dial 
objects. When you click on the object and drag, its value changes. pictctrl can 
track either horizontal and/or vertical cursor motion, or circular motion. ignor-
ing subsequent drag motions. When using dial mode you must specify the num-
ber of image frames that are in the picture file you’re using (see below). The 
number of images does not have to be the same as the range of values. For exam-
ple, a knob could have a range of 128 but only 30 distinct images. There is little 
reason to create a control with more image frames than its range, since manipu-
lating the control could change its appearance without causing any output.

When using dial mode you must specify the number of image frames that are in 
the picture file you’re using (see below). The number of images does not have to 
be the same as the range of values. For example, a knob could have a range of 128 
but only 30 distinct images. There is little reason to create a control with more 
image frames than its range, since manipulating the control could change its 
appearance without causing any output.
309



pictctrl Picture-based
control
When the pictctrl object is in dial mode, you can specify a Range for the object 
which will automatically limit numbers received in the inlet to between 0 and the 
number 1 less than the specified range, a Multiplier—a number by which all num-
bers will be multiplied before being sent out—and an Offset—which will be 
added to the number, after multiplication. The default object has a range of 128, a 
multiplier of 1, and an offset of 0.

The Image Frames box lets you specify the number of distinct images (columns) 
in the picture file. The number of frames does not have to be the same as the range 
of the control; pictctrl will use the nearest image for any given value.

If Horizontal Tracking or Vertical Tracking is checked, the pictctrl object will 
respond when you click on it and drag the mouse in the corresponding direction. 
Dragging the mouse to the right and/or up increases the pictctrl object’s value; 
dragging it left and/or down decreases its value. Enabling either of these attributes 
disables the Circular Tracking and Click to Increment modes (see below).

If Circular Tracking is checked, the control will respond when you click on it and 
drag the mouse in a circular arc relative to the control’s center. Dragging the 
mouse clockwise increases the control’s value; dragging it counterclockwise 
decreases its value. Enabling Circular Tracking disables all other tracking modes. 

If Click to Increment is checked, the control’s value increases by one every time it is 
clicked. Subsequent dragging motions are ignored. When the uppermost value is 
reached, the value returns to zero with the next click. Enabling Click to Increment 
disables all other tracking modes. 

If Clicked Images is checked, pictctrl uses an alternate set of image frames in your 
picture file to give the dial a different appearance when the user clicks on it and 
drags the mouse pointer.

The Tracking Ratio attribute specifies how many pixels the mouse pointer must 
move before the value of the dial changes by one increment. For the circular track-
ing mode, the tracking ratio specifies how many degrees the cursor must move, 
relative to the center of the object, to increase the value by one.

The Has Inactive Images and Image Masks checkboxes specify that your picture file 
has additional rows of images for its inactive state, and whether it has image 
masks.

Checking Audible Feedback will generate Mac OS Appearance Manager sound 
effects when clicked. 

The Picture File option lets you choose a picture file for the pictctrl object’s knob 
by clicking on the Open button. The current file’s name appears in the text box to 
the left of the button. You can also choose a file by typing its name in this box, or 
by dragging the file’s icon from the Finder into this box.
310



pictctrl Picture-based
control
 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Picture File Format
When you create a new pictctrl object in a patcher window, it has no associated 
picture file. Use the Open button in the inspector to choose a picture file for the 
control. It can open PICT files and, if QuickTime is installed, other picture file 
formats that are listed in the QuickTime appendix. The layout of the picture in the 
file varies depending on which mode of operation the pictctrl uses. All three 
modes require that the pictures be made up of a grid of images, in which all 
images have the same width and height. 

Button mode has the simplest layout:

The first row of images is mandatory: these two images are used for the idle and 
clicked states (values zero and one, respectively) of the button. The next row of 
images, if present, is used for the control when it is in its inactive state. The next 
rows contain the masks for the top row of images, and the inactive images if 
present.
311



pictctrl Picture-based
control
Toggle mode has a similar layout:

In this mode, the top two rows are mandatory. The first row of images are used 
when the control’s value is zero, the next row when its value is one. The third row 
is optional; it is used for the control when it is in its inactive state. (Note that there 
are no “clicked” images for the inactive state, since when inactive, the control 
ignores mouse clicks.) The next rows contain masks for the images.
312



pictctrl Picture-based
control
The Dial mode layout varies in size depending on how many image frames it has, 
which must be the same as the Image Frames parameter as set in the inspector:

The first row of images is mandatory: one image for each visually distinct state of 
the control. Dials need as many picts as you wish them to have visible states. Note 
that dials can receive and send a larger range of values than are represented by 
picts (e.g. your dial can have a range of 128 even if you only use eight pict frames 
to represent the range of the dial). The next row of images is optional, and is used 
when the user is clicking and dragging on the object to change its value. The next 
row is also optional; (Note that there are no “clicked” images for the inactive state, 
since when inactive, the control ignores mouse clicks.) The following rows con-
tain masks for the images. 

Output
int The current value of the pictctrl object. In toggle and button modes this will be a 0 

or a 1. In dial mode, this value is specified by the range, offset, and multiplier that 
you set in the Inspector window.
313



pictctrl Picture-based
control
Examples

Create customized controls to create a more attractive user interface

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
matrixctrl Matrix-style switch control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
314



pictslider Picture-based
slider control
The pictslider object is a slider control that uses pictures in external files for its appearance. It uses 
two pictures—one for the “knob” (the part that you move with the mouse, corresponding to the 
part of a physical slider that you move with your fingers) and one for the background over which 
the knob moves. The pictslider object has default pictures that are used if you do not want to sup-
ply pictures of your own, but its intended use is creating controls with customized appearances.

You can use the pictslider object to create horizontal or vertical sliders, as well as two-dimensional 
controllers (virtual trackpads or joysticks).

Input
bang In left inlet: Sends the current values of the pictslider to its outlets. The horizontal 

value is sent out the left outlet; the vertical value out its right outlet.

int In left inlet: sets the pictslider object’s horizontal value. The value is also sent out 
the left outlet, and the pictslider object’s current vertical value is sent out the right 
outlet.

In right inlet: sets the pictslider object’s vertical value. The value is also sent out the 
right outlet, and the control’s current horizontal value is sent out the left outlet.

float Converted to int.

list In left inlet: A list of two numbers sent to the left inlet sets the pictslider object’s 
horizontal value to the first number and its vertical value to the second. The two 
values are sent out the left and right outlets.

active In left inlet: The word active, followed by a 0 or 1, toggles mouse control of the 
pictslider object. The default is 1 (enabled). If a separate set of inactive images is 
present in the pictslider object’s graphics file and if the inactive images attribute is 
set, the active message will also change the appearance of the control.

bkgndpicture The word bkgndpicture, followed by a symbol that specifies a filename, designates 
the graphics file that the pictslider object will use for the control’s background 
image. The symbol used as a filename must either be the name of a file in Max’s 
current search path, or a complete pathname for the file (e.g. ‘MyDisk:Documents:UI 
Pictures:CoolBkgnd.pct’).

bkgndsize In left inlet: The word bkgndsize, followed by a nonzero value, tells the pictslider 
object to change the size of the object to match the size of the background picture. 
After receiving this message, the object’s size cannot be changed. bkgndsize 0 allows 
the control to be resized in the usual manner by dragging its lower-right corner.

bottommargin In left inlet: The word bottommargin, Followed by an int greater than or equal to 
zero, sets the bottom margin, in pixels, for the pictslider. The margin reduces the 
area in which the knob moves; if a margin is zero, the knob can move all the way 
to the bottom of the slider.
315



pictslider Picture-based
slider control
bottomvalue In left inlet: The word bottomvalue, followed by an int, sets the values emitted by the 
pictslider object when the knob is moved as far as possible to the bottom. The 
message bottomvalue 100 will cause the control to send 100 out of its left outlet when 
the knob is moved all the way to the bottom. 

clickedimage In left inlet: The word clickedimage, followed by a nonzero value, specifies that the 
graphics file used by the pictslider object contains an additional image to be dis-
played when the control is clicked.

horizontaltracking In left inlet: The word horizontaltracking, followed by a float, sets the horizontal 
tracking ratio for movements of the pictslider object’s knob. The default value is 
1.0. Values greater than one cause the knob to move more quickly when dragged; 
values less than one cause it to move more slowly.

imagemask In left inlet: The word imagemask, followed by a nonzero value, specifies that the 
graphics file used by the pictslider object contains image masks.

inactiveimage In left inlet: The word inactiveimage, followed by a nonzero value, specifies that the 
graphics file used by the pictslider object contains additional images for the 
object’s inactive state.

invisiblebkgnd In left inlet: The word invisiblebkgnd, followed by a nonzero value, tells the pictslider 
object to not draw any background image. The knob will appear to float above 
any objects underneath it.

jump In left inlet: The word jump, followed by a nonzero value, makes pictslider move 
the knob to the position of the cursor if you click in the object outside of the knob. 
jump 0 disables this behavior; you must click in the knob itself to move it.

knobpicture In left inlet: The word knobpicture, followed by a symbol that specifies a filename, 
designates the graphics file that the pictslider object will use for the control’s knob 
file. The symbol used as a filename must either be the name of a file in Max’s cur-
rent search path, or a complete pathname for the file (e.g. ‘MyDisk:Documents:UI Pic-
tures:CoolKnob.pct’).

leftmargin In left inlet: The word leftmargin, followed by an int greater than or equal to zero, 
sets the left margin, in pixels, for the pictslider. The margin reduces the area in 
which the knob moves; if a margin is zero, the knob can move all the way to the 
left of the slider.

leftvalue The word leftvalue, followed by an int, sets the values emitted by the pictslider 
object when the knob is moved as far as possible to the left. The message leftvalue 
100 will cause the control to send 100 out of its left outlet when the knob is moved 
all the way to the left. 
316



pictslider Picture-based
slider control
 movehorizontal In left inlet: The word movehorizontal, followed by a nonzero value, allows the knob 
to change when the mouse is moved horizontally. The message movehorizontal 0 
prevents the knob from moving when the mouse is moved horizontally.

movevertical In left inlet: The word movevertical, followed by a nonzero value, allows the knob to 
change when the mouse is moved vertically. The message movevertical 0 prevents 
the knob from moving when the mouse is moved vertically.

rightmargin In left inlet: The word rightmargin, followed by an int greater than or equal to zero, 
sets the right margin, in pixels, for the pictslider. The margin reduces the area in 
which the knob moves; if a margin is zero, the knob can move all the way to the 
right of the slider.

rightvalue In left inlet: The word rightvalue, followed by an int, sets the values emitted by the 
pictslider object when the knob is moved as far as possible to the right. The mes-
sage rightvalue 100 will cause the control to send 100 out of its left outlet when the 
knob is moved all the way to the right. 

scaleknob In left inlet: The word scaleknob, followed by a nonzero value, tells the pictslider 
object to stretch or shrink the knob when you change the size of the entire object. 
scaleknob 0 will result in the knob always being drawn at its original size.

set In left inlet: The word set, followed by a number, sets the pictcslider object’s hori-
zontal value but does not send the value out its left outlet.The word set, followed 
by two numbers, sets the pictslider object’s horizontal value to the first number 
and its vertical value to the to the second number, but does not send the values out 
its outlets.

In right inlet: The word set, followed by a number, sets the pictslider object’s verti-
cal value, but does not send the value out its right outlet.

soundfx In left inlet: The word soundfx, followed by a 0 or 1, turns on the use of Appearance 
sounds available in Mac OS 8.5 and later. soundfx 0 turns the sounds off.

topmargin In left inlet: The word topmargin, followed by an int greater than or equal to zero, 
sets the top margin, in pixels, for the pictslider. The margin reduces the area in 
which the knob moves; if a margin is zero, the knob can move all the way to the 
top of the slider.

topvalue In left inlet: The word topvalue, followed by an int, sets the values emitted by the 
pictslider object when the knob is moved as far as possible to the top. The message 
topvalue 100 will cause the control to send 100 out of its left outlet when the knob is 
moved all the way to the top. 

track In left inlet: The word track, followed by a float, sets the tracking ratio for horizon-
tal movements of the pictslider object’s knob.
317



pictslider Picture-based
slider control
In right inlet: The word track, followed by a float, sets the tracking ratio for vertical 
movements of the pictslider object’s knob.

verticaltracking In left inlet: The word verticaltracking, followed by a float, sets the vertical tracking 
ratio for movements of the pictslider object’s knob. The default value is 1.0. Values 
greater than one cause the knob to move more quickly when dragged; values less 
than one cause it to move more slowly.

Inspector
The behavior of a pictslider object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any pictslider object displays the 
pictslider Inspector in the floating window. Selecting an object and choosing Get 
Info… from the Object menu or also displays the Inspector.

The pictslider Inspector lets you set the following attributes:

The Margin number boxes set the corresponding margin for the pictslider, in pix-
els. The margins reduce the area in which the knob moves. If a margin is zero, the 
knob can move all the way to the corresponding edge of the slider. If the left mar-
gin is five, for example, the knob can move no closer than five pixels to the left 
edge of the slider. 

The Value number boxes set the values emitted by the control when the knob is 
moved as far as possible in the corresponding direction. For example, setting the 
right-hand number box to 100 will cause the control to send 100 out of its left 
outlet when the knob is moved all the way to the right. (The value is sent out the 
left outlet because the left outlet emits values for horizontal movements of the 
knob.) Values for intermediate positions of the knob are calculated by interpolat-
ing between the left and right or top and bottom values. Either one of each pair of 
numbers can be larger, so for example if the top value is -100 and the bottom is 
50, the vertical value will decrease from 50 to -100 as the knob is moved from the 
bottom to the top.

If the Move Horizontal or Move Vertical checkboxes are checked, the knob can be 
moved in the corresponding direction by clicking and dragging it with the 
mouse. If you’re creating a traditional slider that moves only horizontally or verti-
cally, check the appropriate checkbox and leave the other unchecked. 

When the Audible Feedback option is checked, When checked the pictctrl will 
generate Mac OS Appearance Manager sound effects when clicked.

Selecting the Knob Jumps to Click Location option lets you click anywhere within 
the pictslider object’s bounding rectangle and have the knob jump to this location. 
If unchecked, you must click and drag the knob itself to move it. 
318



pictslider Picture-based
slider control
The Has Inactive Images checkbox tells the pictslider object that your graphics files 
have additional images for the control’s inactive state. Leave this box unchecked if 
the picture files used by the control do not have these images.

The Tracking Ratio values determine the responsiveness of the knob to mouse 
movements. The default value is 1.0. Values greater than one cause the knob to 
move more quickly when dragged; values less than one cause it to move more 
slowly.

There are four attributes listed in the Inspector that let you change the appearance 
of the slider’s knob. You can choose a graphics file for the slider’s knob by clicking 
on the Open button. The current file’s name appears in the text box to the left of 
the button. You can also choose a file by typing its name in this box, or by drag-
ging the file’s icon from the Finder into this box.

Checking the Scale Knob When Control Size Changes option allows the knob’s 
image to be stretched or compressed when you resize the pictslider, in proportion 
to the relative sizes of the object’s bounding box and the background picture. If 
unchecked, the knob’s image will be drawn at its original size. Since stretched 
images tend to look blocky and uneven, you will usually want to draw an image 
for your knob at the size that you want the knob to be. This knob-scaling attribute 
is useful for experimenting with the size and layout of the pictslider without hav-
ing to redraw the knob’s picture file.

Checking the Clicked Image option will use an alternate set of image frames in 
your picture file to give the knob a different appearance when the user clicks and 
drags it.

If you want to use image masks in your knob’s graphics file to draw the knob, 
select the Image Mask option. Masks can be used to create knobs with a non-rect-
angular shape. If your knob picture has separate images for the clicked and/or 
inactive state, you must supply masks for those as well.

There are three attributes listed in the Inspector that let you change the appear-
ance of the slider’s background. You can choose a graphics file for the slider’s 
background by clicking on the Open button. The current file’s name appears in 
the text box to the left of the button. You can also choose a file by typing its name 
in this box, or by dragging the file’s icon from the Finder into this box.

If Size Control to Background Image is checked, the pictctrl object’s size is adjusted 
to match the size of the image chosen for the background. When this attribute is 
enabled, you cannot change the object’s size in the usual manner by clicking and 
dragging its lower-right corner; its size is fixed. If unchecked, the image is 
stretched or shrunk to fill the size of the slider. Since stretched images tend to look 
blocky and uneven, you will usually want to draw an image for your slider at the 
size that you want the slider to be. Leaving this sizing attribute unchecked is useful 
319



pictslider Picture-based
slider control
for experimenting with the size and layout of the pictslider without having to 
redraw the slider’s picture file.

Checking the Invisible Background box tells the pictslider object not to draw any-
thing for the slider’s background. The knob will appear to “float” over any under-
lying objects. 

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments

None.

Picture File Format
The pictslider object uses the two picture files: one for the background, and one 
for the knob that is moved over the background with the mouse. 

Background picture files can be in PICT format, or if QuickTime is installed, one 
of the other graphics file formats listed in the QuickTime appendix. Background 
picture files must have the following layout:

Only one image is required; if only one image is supplied, it will be used for draw-
ing all states of the background. Additional images are placed to the right of the 
first image. You can add images for the inactive state of the control. The inactive 
image will be used after the control has received an active 0 message.

Knob files must be in PICT format with the following layout:
320



pictslider Picture-based
slider control
The picture is made up of a grid of one or more images. All images have the same 
width and height. 

Only one image is required; if only one image is supplied, it will be used for draw-
ing all states of the knob. Additional images are placed to the right of the first 
image. You can add images for either or both the “clicked” or inactive states of the 
control. The “clicked” image will be shown when the user is dragging the control’s 
knob. The inactive image will be used after the control has received an active 0 
message.

Image masks can be used to create knobs with non-rectangular outlines. These 
masks are directly below their corresponding images in the picture file. If you 
wish to use masks for any of the knob images, you must provide masks for all of 
them—each image will have a corresponding row of masks. Black pixels in the 
mask image create areas of the corresponding image that will be drawn, and white 
pixels create invisible areas.

Output
int Moving the slider’s knob by clicking and dragging it with the mouse, or sending 

values to either of its inlets, causes its horizontal value to be emitted from the left 
outlet and its vertical value to be emitted from the right outlet. Incoming values 
are constrained to the ranges determined by the top/bottom and left/right values 
set in the inspector.

Examples

 pictslider lets you create both one- and two-dimensional UI elements
321



pictslider Picture-based
slider control
See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
ubutton Transparent button, sends a bang
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
322



pipe Delay numbers
or lists
Input
int In left inlet: The number is delayed a certain number of milliseconds before it is 

sent out the left outlet. If there are middle inlets, the numbers in those inlets are 
also delayed and sent out the corresponding outlets.

int or float In right inlets: Sets the time in milliseconds to delay numbers received in the 
other inlets.

bang In left inlet: Retriggers the numbers currently stored in the pipe to be output again 
in the specified number of milliseconds (in addition to any numbers already being 
delayed).

float In left and middle inlets: Converted to int, unless the inlet was initialized with a 
float argument.

list In left inlet: Numbers are distributed to the pipe object’s inlets to be delayed 
together. If there is a number for the right inlet, it sets the delay time for the other 
numbers.

clear In left inlet: Halts all numbers currently being delayed by pipe.

clock The word clock, followed by the name of an existing setclock object, sets pipe to be 
controlled by that setclock rather than by Max’s internal millisecond clock. The 
word clock by itself sets pipe back to using Max’s regular millisecond clock.

flush In left inlet: Immediately sends out all numbers currently being delayed by pipe, 
and clears the pipe object’s memory. Numbers are sent out each outlet in reverse 
order from that in which they were received in the corresponding inlet.

Arguments
int Optional. The last argument sets an initial value for the delay time, in millisec-

onds. If there is no argument, the delay time is 0. If there are two arguments, the 
first argument sets an initial value to be stored in pipe, and the second arguments 
sets the delay time. If more than two arguments are present, pipe creates addi-
tional inlets and outlets for delaying additional numbers in parallel to the leftmost 
one.

float The last argument is converted to int. Other float arguments cause the corre-
sponding outlet to send a float.

Output
int When a number is received in the pipe object’s left inlet, it is delayed by the time 

specified, then sent out the left outlet. If there are middle inlets, the numbers in 
those inlets are also delayed and sent out their corresponding outlet, in response 
323 



pipe  Delay numbers
or lists
to a number is received in the left inlet. Unlike delay, more than one number at a 
time can be delayed in a pipe. When a new delay time is received in the right inlet, 
it does not affect when the numbers already being delayed by pipe will come out.

Examples

One or more numbers can be delayed with pipe

See Also

delay Delay a bang before passing it on
Tutorial 22 Delay lines
 324



playbar QuickTime movie
play controller
Input
bang If the left outlet of a playbar object is connected to a movie or imovie object, bang 

links the two objects together so the playbar can control the QuickTime movie. 
After playbar and movie are linked, any messages sent to the movie object which 
change its location or playing status are reflected in the playbar object. (Linking 
will happen automatically when a patcher file containing connected playbar and 
movie objects is loaded. Thus, sending the bang to playbar is only necessary when 
you’re building a patch.)

Arguments
None.

Output
(internal) Out left outlet: Once the playbar and a movie object are linked, the playbar controls 

the QuickTime movie. playbar only supports being connected to one movie object 
at a time. The connection must be made with a patch cord; it cannot take place via 
a send-receive pair.

int Out right outlet: Each command processed by playbar is sent by number out its 
right outlet. A directory of command numbers and their meaning can be found 
in the QuickTime Standard Movie Play Controller documentation. By properly 
interpreting these commands, you can potentially use playbar for other purposes 
besides movie control. However, the “thumb” in the controller has no range until 
an associated QuickTime movie with a non-zero duration is linked to the playbar.

Examples

Using playbar with movie and imovie
325



playbar QuickTime movie
play controller
See Also

movie Play a QuickTime movie in a window
imovie Play a QuickTime movie in a patcher window
326



poltocar Polar to Cartesian
coordinate conversion

327 

Input
float In left inlet: The magnitude (amplitude) portion of a polar coordinate pair to be 

converted into a cartesian (real/imaginary) coordinate pair.

     In right inlet: The phase portion of a polar coordinate pair to be converted into a 
cartesian (real/imaginary) coordinate pair.

Arguments
None.

Output
float Out left outlet: The real portion of a frequency domain coordinate pair.

     Out right outlet: The imaginary portion of a frequency domain coordinate pair.

Examples

Convert Polar to Cartesian coordinates

See Also

cos Cosine function
cartopol Cartesian to Polar coordinate conversion
lcd Draw graphics in a Patcher window
sin Sine function



poly  Allocate notes to
different voices
Input
list In left inlet: The first number is treated as a pitch, and the second number is 

treated as a velocity value, of a pitch-velocity pair. If the velocity is not 0, poly allo-
cates that note-on to the first available voice number and sends it out. If the veloc-
ity is 0, poly frees the voice that is holding that pitch and sends out the note-off.

int In left inlet: The number is treated as the pitch value of pitch-velocity pair and the 
note is sent out.

In right inlet: The number is stored as the velocity to be paired with numbers 
received in the left inlet.

float Converted to int.

stop In left inlet: Immediately sends note-offs for all the notes currently being held by 
poly, freeing all voices.

Arguments
int Optional. The first argument sets the number of voices to which poly can allocate 

notes (thus limiting the number of notes poly can hold at one time). If there is no 
argument present, poly can hold 16 notes.

If there is no second argument, or if the second argument is 0, poly sends any notes 
it cannot hold out the rightmost outlet. If there is a second argument not equal to 
0, poly steals voices: when poly receives more notes than it has voices, it turns off 
the note it has held the longest and puts the new note in its place. 

float Converted to int.

Output
int Out left outlet: The output is the voice number of the note-on or note-off being 

sent out.

Out 2nd outlet: The output is the pitch of the note-on or note-off.

Out 3rd outlet: The number is the velocity of the note-on or note-off.

list Out 4th outlet: The first number is the pitch, and the second number is the veloc-
ity, of any notes poly cannot hold. If there is a nonzero second argument, poly 
steals voices rather than send out overflow, so the fourth outlet is not created.
 328



poly Allocate notes to
different voices
Examples

See Also

Borax Report current information about note-ons and note-offs
flush Provide note-offs for held notes
makenote Generate a note-off message following each note-on

Send each voice to a different place Limit the number of notes held at a time
329 



polyin  Output received
MIDI poly pressure values
Input
(MIDI) polyin receives its input from MIDI polyphonic key pressure messages received 

from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming polyphonic key pressure messages. 
The word port is optional and may be omitted.

(mouse) Double-clicking on a polyin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming MIDI messages. If 

there is no argument, polyin receives from all channels on all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to receive polyphonic key pressure messages. 
Channel numbers greater than 16 will be wrapped around to stay within the 1-16 
range.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
int Out left outlet: The number is the pressure value of the incoming polyphonic key 

pressure message.

Out 2nd outlet: The number is the pitch value (key number) of the incoming 
message.

If a specific channel number is included in the argument, there are only two out-
lets. If there is no channel number specified by the argument, polyin will have a 
third outlet, on the right, which will output the channel number of the incoming 
note-on message.
 330



polyin Output received
MIDI poly pressure values
Examples

Messages can be received from everywhere, a specific port, or a specific port and channel

See Also

midiin Output received raw MIDI data
polyout Transmit MIDI poly pressure messages
Tutorial 16 More MIDI ins and outs
OMS Using Max with OMS
Ports How MIDI ports are specified
331 



polyout  Transmit MIDI poly
pressure messages
Input
int In left inlet: The number is the pressure value of a MIDI polyphonic key pressure 

message transmitted on the specified channel and port. Numbers are limited 
between 0 and 127.

In middle inlet: The number is stored as the key number, to be used with pressure 
values received in the left inlet. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to transmit 
the polyphonic key pressure messages.

float Converted to int.

list In left inlet: The first number is the pressure value, the second number is the key 
number, and the third number is the channel, of a transmitted MIDI polyphonic 
key pressure message.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port In left inlet: The word port, followed by a letter a-z or a MIDI output device name, 
specifies the port used to transmit the polyphonic key pressure messages. The 
word port is optional and may be omitted.

(mouse) Double-clicking on a polyout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI polyphonic key pressure mes-

sages. Channel numbers greater than 16 received in the right inlet will be wrapped 
around to stay within the 1-16 range. If there is no argument, polyout initially 
transmits out port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to transmit polyphonic key pressure messages. 
Channel numbers greater than 16 will be wrapped around to stay within the 1-16 
range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.
 332



polyout Transmit MIDI poly
pressure messages
Output
(MIDI) There are no outlets. The output is a MIDI polyphonic key pressure message 

transmitted directly to the object’s MIDI output port.

Examples

Letter argument transmits to only one port.
Otherwise, number specifies both port and channel

See Also

midiout Transmit raw MIDI data
polyin Output received MIDI poly pressure values
Tutorial 16 More MIDI ins and outs
OMS Using Max with OMS
Ports How MIDI ports are specified
333 



 334

pow  Compute x to
the power of y

pow~ raises the base value (set in the right inlet) to the power of the exponent (set in the left inlet).

Input
float or int In left inlet: Sets the exponent.

In right inlet: Sets the base value.

Arguments
float or int Optional. Sets the base value. The default value is 0. 

Output
float The base value (from the right inlet) raised to the exponent (from the left inlet).

Examples

pow will give you a square deal (and other numbers, too)

See Also

expr Evaluate a mathematical expression
>> Shift all bits to the right
<< Shift all bits to the left



prepend Put one message at the
beginning of another

335 

Input
set The word set, followed by any message, will replace the message stored in prepend, 

without triggering output.

anything else The message stored in prepend is attached to the beginning of the message 
received in the inlet, and the combined message is sent out its outlet.

Arguments
anything Obligatory. Sets the message to be prepended at the beginning of incoming mes-

sages. The first argument must be a symbol.

Output
anything The message received in the inlet is combined with the message stored in prepend, 

and then sent out the outlet. The maximum allowed length of any constructed 
message is 256 items.

Examples

Symbols can be combined into meaningful messages with prepend

See Also

append Append arguments at the end of a message
message Send any message
route Selectively pass the input out a specific outlet
Tutorial 25 Managing messages



preset  Store and recall the
settings of other objects
Input
int The number indicates a preset, and the settings stored in that preset are sent out to 

the connected objects, or to all objects in the window if no patch cords are con-
nected to the preset object’s outlet. The settings in a preset can also be sent out by 
clicking on the preset with the mouse.

float Converted to int.

bang Sends out the settings of the preset that was most recently recalled with an int or a 
mouse click.

clear Erases the contents of the most recently sent preset. The word clear, followed by a 
number, erases the contents of that numbered preset.

clearall Erases the contents of all presets.

list Same as bang.

name The word name, followed by a symbol, sets the ID Name for the preset. The ID 
Name allows the preset to have a unique ID so that files created for it will not read 
into other presets.

read The word read, followed by no arguments or a number, displays an Open Docu-
ment dialog box for choosing a file of preset data to read. If the preset has been 
given a Preset Name Code, only files of the type specified by the code will be dis-
played. The number argument specifies the preset number into which the file data 
should be read. If the number is 0 or -1, the data in the file will be read into the 
number of presets contained in the file starting with the first one. If the word read 
is followed by a symbol or a number and a symbol, no dialog box is displayed. 
Instead, the symbol is taken as a filename from which to read presets. The num-
ber functions as already described.

store The word store, followed by a number, it stores the current setting of all user inter-
face objects in the same window in the preset indicated by the number. If objects 
are connected to the preset object’s left outlet with patch cords, only those con-
nected objects will be affected.

The presets (storage locations in the preset object) are numbered left-to-right, 
top-to-bottom. When settings are stored in a preset, a dot appears on it to indi-
cate that it contains something. Settings can also be stored in a preset by holding 
down the Shift key and clicking on the preset with the mouse.

write The word read, followed by no arguments or a number, displays a Save As dialog 
box for specifying a destination filename for writing the preset data. If the preset 
has been given a Preset Name Code, the file is given this code as its file type. The 
number argument specifies the preset number from which the preset data should 
be written. If the number is 0 or -1, all presets will be written. If the word write is 
 336



preset Store and recall the
settings of other objects
followed by a symbol or a number and a symbol, no dialog box is displayed. 
Instead, the symbol is taken as a filename to use for writing the data; the file will 
be placed in the current default directory. The number functions as already 
described.

Inspector
The behavior of a preset object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any preset object displays the preset Inspector 
in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The preset Inspector lets you specify an ID Name to the preset object, to distin-
guish it from other preset objects. The first four characters of this name, if you 
enter one, are used as the Macintosh “file type” for files of presets saved by this 
object. When you send the read message to a preset object that has an ID Name, 
only the files whose types match the first four characters of this name are shown 
in the standard file dialog. This allows you to create a “document type” for preset 
files so the user won’t open a preset file designed for another preset object. A pre-
set object can also be set to save its contents as part of the patch that contains it by 
checking the Save Presets with Patcher check box.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int or float Out left outlet: When a preset is recalled, either by a mouse click or by a number in 

the inlet, the settings stored in that preset are sent out the outlet to all connected 
objects, or, if no objects are connected, to all user interface objects in the window.

int Out middle outlet: When a preset is recalled, the number of the preset is sent out.

(internal) Any user interface objects connected to the right outlet of preset will be excluded 
from the effects of that preset. (This is particularly useful when there are many 
objects you want to affect with preset, and only a few you want to exclude.) 

Objects whose data is stored in a preset include: dial, Ggate, Gswitch, hslider, led, 
number box (both int and float), slider, toggle, and uslider. The contents of a table 
can also be stored and recalled by preset, but the table must be connected to the 
337 



preset  Store and recall the
settings of other objects
preset object’s outlet with a patch cord. The outlet of preset can also be connected 
to a send object, to communicate with objects connected to a receive object of the 
same name.

The number of visible presets can be adjusted by resizing the preset object’s box. 
The maximum number of presets in a single preset object is 2048.

Examples

Remember many past settings and recall them later

See Also

grab Intercept the output of another object
Tutorial 37 Data structures
Data Structures Ways of storing data in Max
 338



print Print any message
in the Max window

339 

Input
anything Messages are not interpreted by the print object. They are simply printed verbatim 

in the Max window.

(mouse) Double-clicking on any print object opens the Max window or brings it to the 
front.

Arguments
anything Optional. The argument is an identifier for the print object. Each message printed 

in the Max window is preceded by the name of the print object, and a colon (:). 
The name must not contain spaces or special characters, but can be either a num-
ber or a word. If there is no argument, the name of the print object is print. Using 
an argument to print can help distinguish the output of two or more print objects.

Output
anything There are no outlets. The message received in the inlet is printed in the Max win-

dow.

Examples

Used for displaying output, or for notifying when an event takes place

See Also

Tutorial 1 Saying “Hello!”
Debugging Techniques for debugging patches



prob  Make weighted random
series of numbers
Input
list The numbers make an entry in a probability matrix of transitions from one num-

ber to another (known as a first-order Markov chain). The list should consist of 
three numbers: a current value, a next value, and a probability that current will be 
followed by next. The first two numbers in the list identify a possible succession of 
output values: a possibility that the first number will be followed by the second. 
The third number sets the relative likelihood that the sequence of numbers will 
occur. Once the first number has been sent out, the next output is determined by 
the relative likelihood(s) assigned to each possible subsequent number.

bang Makes a weighted random choice of a number to be sent out, based on the imme-
diately previous output and on the specified likelihoods of subsequent numbers.

int Sets (but does not send out) out the current number value. The subsequent out-
put, in response to a bang message, will be determined by the stored matrix of 
probable transitions from that number.

reset The word reset, followed by a number, tells prob what number to revert to in the 
event that it gets “stuck” on a number that has no possible next number.

dump Prints out a complete list of the stored transition probabilities (Markov chain) in 
the Max window.

embed The word embed, followed by a nonzero number, causes the contents of prob to be 
saved as part of the patch that contains it. The message embed 0 causes prob to for-
get its contents when the patch is closed.

clear Erases the contents of prob.

Arguments
None.

Output
int Out left outlet: When bang is received in the inlet, prob sends out a number, which 

it chooses based on its knowledge of the last number chosen and the relative like-
lihood assigned to each possible subsequent number.

bang  Out right outlet: If the current number (the last number chosen) has no possible 
transitions listed in the transition probability matrix, bang is sent out (and noth-
ing is sent out the left outlet) in response to a bang in the inlet.
 340



prob Make weighted random
series of numbers
Examples

Likelihood of a certain output depends on the previous output

See Also

anal Make a histogram of number pairs received
Histo Make a histogram of the numbers received
mean Find the running average of a stream of numbers
341 



pv  Share variables specific to a
patch and its subpatches
pv operates identically to the value object, with two exceptions. First, pv objects that share the same 
name only share the same value if they are in the same patcher, or one of its subpatches. Second, 
the pv object cannot be the receiver of a message sent remotely by a message box (the first symbol 
after a semicolon). So, pv means private value—a value that is shared between objects, but only 
within a single patcher.

Input
any message The message is stored, to be shared by all other pv objects of the same name that 

are inside the object’s patcher or its subpatches (or, if in a subpatch, its parent 
patch). A message received in any other such pv object will change the stored mes-
sage.

bang Sends out the stored message.

Arguments
any symbol Obligatory. The first argument provides an identifying name. All pv objects with 

that name within the patcher will share the same value.

any message Optional. Any message typed in after the first argument initializes the stored con-
tents of the pv object. Note that when two or more pv objects in a patcher file that 
share the same name are initialized to different values, the one which is initialized 
last determines the value. Since the order in which pv objects will be initialized 
cannot be precisely determined, the best practice is to initialize only one of the 
related pv objects. 

Output
any message When bang is received in the inlet, the stored message is sent out.
 342



pv Share variables specific to a
patch and its subpatches
Examples

See Also

float Store a decimal number
int Store an integer value
receive Receive messages without patch cords
send Send messages without patch cords
value Share a stored message with other objects
343 



radiogroup Radio button/check box
user interface object
The radiogroup object has two modes of operation: radio button and check box. In radio button 
mode, the radiogroup object provides a user-definable number of buttons in a group, only one of 
which may be selected at a time. In check box mode, the indicators in the radiogroup object func-
tion as a set of on/off indicators. Check box mode also supports a way to have the checkboxes act 
as indicators for the bit pattern of a binary representation of an integer (see the flagmode message 
below). 

Note: radiogroup can be re-sized horizontally so it will extend under comment boxes placed to the 
right of the buttons or boxes. this way, clicking on the text to the right of the button will also set the 
button selection or box state.

Input
(mouse) In radio button mode, clicking on a radio button will set the radio button selection 

and output the corresponding button number (numbering starts from 0). 

In check box mode, clicking on a check box will change its state (from 1 to 0 or 
from 0 to 1) and output a list of zeros and ones corresponding to the on/off state 
of the boxes. if the entire group of buttons/boxes is inactive (greyed out) it will not 
respond to clicks. if an individual item is disabled (greyed out) it will not respond 
to clicks, although active items in the group will still respond to clicks as usual. 
The Flag Mode variation on the check box mode has check boxes that correspond 
to bit positions for a binary value (i.e. the first checkbox corresponds to the 1s, the 
second to 2s, the third to 4s, etc.) Clicking on a check box will select or deselect 
the check box and output the integer value which corresponds to the bit pattern.

bang In radio button mode: A bang outputs the currently selected radio button number.

In check box mode: A bang outputs a list of zeros and ones representing the on/off 
state of the check boxes.

In flag mode: A bang send the integer that corresponds to the bit pattern of the 
currently checked boxes (i.e., if boxes one, two, and three are checked, a bang will 
output an value of 7)out the radiogroup object’s output. 

int In radio button mode: An integer sets the radio button selection and outputs the 
input value. Numbering starts with 0, and a negative number indicates that no 
buttons will be selected.

In flag mode: An integer value received in the radiogroup object’s inlet will set the 
buttons or checkboxes to reflect the bit pattern of the integer value (i.e., a value of 
19 will select boxes one, two, and five, corresponding to the binary value 10011) 
and send the integer value out the radiogroup object’s output. 

float In radio button and check box modes: Converted to int.

list In check box mode: list of zeros and ones sets the check box states and causes out-
put of the input list. If you have specified check box mode and have the flag mode 
 344



radiogroup Radio button/check box
user interface object
set using the flagmode 1 message, a list of zeros and ones sets the check box states 
and causes output of the input list.

disableitem In radio button and check box modes: disable the items whose numbers are indi-
cated (they will be drawn in grey and will not respond to clicks, although they will 
still respond to set messages, ints or lists).

enableitem In radio button and check box modes: The word enableitem, followed by followed 
by a number or list of numbers, will enable the items whose numbers are indi-
cated if they have been disabled with the disableitem message.

flagmode In check box mode: The word flagmode, followed by a nonzero value, sets the flag 
mode of operation for the radiogroup object. In this mode, each check box corre-
sponds to one bit in an integer value (i.e., the first radio button or checkbox corre-
sponds to the ones bit, the second button or checkbox to the twos bit, the third 
button or checkbox to the fours bit, etc.). The message flagmode 0 disables this 
mode (default).

itemtype In radio button and check box modes: The word itemtype, followed by a zero or 
one, selects the mode of the radiogroup object. The message itemtype 0 selects radio 
button mode, and itemtype 1 selects check box mode.

inactive In radio button and check box modes: The word inactive, followed by a zero or 
one, toggles the active or inactive state of the entire group of radio buttons or 
check boxes. inactive 0 (default) means that the boxes are not inactive, and will 
respond to mouse clicks. The message inactive 1 will gray out the radio buttons or 
check box displays, and they will not respond to mouse clicks (although their 
state can still be set using set messages, ints or lists).

offset In radio button and check box modes: The word offset, followed by a number, 
changes the pixel offset between the tops of the buttons/boxes. the minimum off-
set is 14 pixels, the default offset is 16 pixels.

set In radio button mode: The word set, followed by a number, sets the currently 
selected radio button without triggering any output.

In check box mode: The word set, followed by a list of zeros and ones, sets the 
check box states without triggering any output. 

If you are using check box mode and are also using Flag Mode, a number will set 
the state of the first 32 checkboxes in a pattern which corresponds to the bit pat-
tern of the number without triggering output (see the flagmode section for more 
information).

size In radio button and check box modes: The word size, followed by a number, 
changes the number of buttons or boxes. The default is 2, and the maximum is 64. 
345



radiogroup Radio button/check box
user interface object
Note: If you care using the radiogroup object in check box mode and have 
enabled Flag Mode, you will only be able to set 32 checkboxes.

Inspector
The behavior of a radiogroup object is displayed and can be edited using its 
Inspector. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any radiogroup object displays the 
radiogroup Inspector in the floating window. Selecting an object and choosing 
Get Info… from the Object menu or also displays the Inspector.

The radiogroup Inspector lets you specify the Number of Buttons (default 2) and 
their Offset (default 16 pixels). The Button Type option lets you choose between 
radio buttons (the default). If you choose the Check Boxes option, you can also 
specify the Flag Mode option (default is unchecked).

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int In radio button mode: Clicking on a radio button outputs an int corresponding to 

the radio button selected. Numbering begins with 0.

In flag mode: Clicking on a check box outputs an int corresponding to the bit pat-
tern represented by the checked boxes (i.e., if boxes one, two, and three are 
checked, a bang will output an value of 7).

list In check box mode: A bang will output a list of zeros and one which indicate the 
on/off state of the group of check boxes.
 346



radiogroup Radio button/check box
user interface object
Examples

Radio buttons allow a single selection, and multiple selection check boxes can control several gates

See Also

button Flash on any message, send a bang
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
toggle Switch between on and off (1 and 0)
ubutton Transparent button, sends a bang
347



random  Generate a
random number
Input
bang In left inlet: Sends out a randomly generated number between 0 and one less than 

its maximum limit.

int In right inlet: The number is stored as the maximum limit for the random output. 
The output will always be between 0 and one less than this maximum limit.

seed In left inlet: The word seed, followed by a number, provides a “seed” value for the 
random generator, which causes a specific (reproducible) sequence of pseudo-
random numbers to occur. The number 0 uses the time elapsed since system star-
tup (an unpredictable value) as the seed, ensuring an unpredictable sequence of 
numbers. This unpredictable seed is used by default when the random object is 
created.

Arguments
int Optional. Sets an initial limit to the random output. The output will always be 

between 0 and one less than this maximum limit. If there is no argument, the limit 
is initially set to 1, which causes random to output 0 whenever it receives a bang.

int Optional. A second argument is used to set a “seed” value for the random genera-
tor. If no argument is specified, the time value will be used to initialize the seed.

Output
int When a bang is received in the left inlet, random generates a random number 

between 0 and one less than its maximum limit.

Examples

Generate random events, or make decisions based on probability
 348



random Generate a
random number
See Also

decide Choose randomly between on and off (1 and 0)
drunk Output random numbers in a moving range
urn Generate random numbers without duplicates
Tutorial 22 Delay lines
349 



receive / r  Receive messages
without patch cords
Input
anything Input is received from send or forward objects that have the same name, even if the 

sending object is in another loaded patch.

Messages can also be sent remotely to a receive object from an int or float object 
(with the word send followed by the name of the receive object), from a grab object 
(with a symbol argument), or from a message box (with a semicolon followed by 
the name of the receive object.

(mouse) Double-clicking on a receive object looks for and opens a loaded patcher window 
containing a send object with the same name. Repeatedly double-clicking on the 
receive object looks for and opens more such windows.

set If there is no typed-in argument, receive has one inlet. The word set, followed by a 
symbol, provides a name for receive, as if that name had been typed in as an argu-
ment.

Arguments
any symbol Optional. Gives a name to receive. If there is no argument, receive has one inlet, 

and a name must be provided by a set message before anything can be received.

Output
anything Any message received in the inlet of any send or forward object with the same 

name, or sent explicitly from an int, float, grab, or message box, is passed out the 
outlet of receive, even if the sending object is in a different loaded patch.

Examples

Virtual connections exist between all send and receive objects that share the same name
 350



receive / r Receive messages
without patch cords
See Also

float Store a decimal number
forward Send remote messages to a variety of objects
int Store an integer value
message Send any message
route Selectively pass the input out a specific outlet
send Send messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive
351 



rect  Draw solid rectangle
in a graphic window
Input
bang In left inlet: Draws the rectangle using the current screen coordinates, drawing 

mode, and color.

int In left inlet: Sets the left screen coordinate of the rectangle—relative to the upper 
left corner of the graphics window—and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the rectangle.

In 3rd inlet: Sets the right screen coordinate of the rectangle.

In 4th inlet: Sets the bottom screen coordinate of the rectangle.

In 5th inlet: Sets the drawing mode of the rectangle. See the listing of drawing 
mode constants under oval.

In 6th (right) inlet: Sets the palette index (color) of the rectangle according to the 
graphics window’s current palette. This setting has no effect when the monitor is 
in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the 
RGB values for the color of the rectangle the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a rect 
object’s sprite priority in its graphics window. Objects with lower priority will 
draw behind those with a higher priority.

Arguments
any symbol Obligatory. The first argument to rect must be the name of a graphics window 

into which the rectangle will be drawn. The window need not necessarily exist at 
the time the rect object is created, but the rectangle will not be drawn unless the 
name matches that of a visible window.

int Optional. Sets the initial sprite priority of the rect. If no priority is specified, the 
default is 3.

Output
(visual) When the rect object’s associated graphics window is visible, and a bang message 

or number is received in its left inlet, a shape is drawn in the window, and the 
object’s previously drawn rectangle (if any) is erased.
 352



rect Draw solid rectangle
in a graphic window
Examples

A rectangle can move in time with MIDI data or any other source of changing numbers

See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
ring Draw framed oval in a graphic window
Graphics Overview of Max graphics windows and objects
353 



 354

relativepath  Convert an absolute
to a relative path

Input
symbol A full pathname of a folder or file as a symbol. A full pathname looks like this:

’MyDisk:Max Folder:extras:filename’

Arguments
None.

Output
symbol The pathname of the folder or file relative to the Max application folder as a sym-

bol. If the input pathname is within the Max application folder, the path is 
changed to start with a colon (on the Macintosh) followed by the folder names of 
the path. Otherwise, the input is repeated to the output.

Examples

See Also

absolutepath Convert a file name to an absolute path
opendialog Open a dialog to ask for a file or folder
strippath Get a filename from a full pathname



ring Draw framed oval
in a graphic window
Input
bang In left inlet: Draws a framed oval using the current screen coordinates, drawing 

mode, and color.

int In left inlet: Sets the left screen coordinate of the oval—relative to the upper left 
corner of the graphics window—and draws the shape.

In 2nd inlet: Sets the top screen coordinate of the oval.

In 3rd inlet: Sets the right screen coordinate of the oval.

In 4th inlet: Sets the bottom screen coordinate of the oval.

In 5th inlet: Sets the drawing mode of the oval. See the listing of drawing mode 
constants under oval.

In 6th (right) inlet: Sets the palette index (color) of the oval according to the 
graphics window’s current palette. This setting has no effect when the monitor is 
in black and white mode.

frgb In left inlet: The word frgb, followed by three numbers between 0 and 255, sets the 
RGB values for the color of the ring the next time it is drawn.

priority In left inlet: The word priority, followed by a number greater than 0, sets a ring 
object’s sprite priority in its graphics window. Objects with lower priority will 
draw behind those with a higher priority.

Arguments
any symbol Obligatory. The first argument to ring must be the name of a graphics window 

into which the oval will be drawn. The window need not necessarily exist at the 
time the ring object is created, but the oval will not be drawn unless the name 
matches that of a visible window.

int Optional. Sets the initial sprite priority of the ring. If no priority is specified, the 
default is 3.

Output
(visual) When the ring object’s associated graphics window is visible, and a bang message 

or number is received in its left inlet, a shape is drawn in the window, and the 
object’s previously drawn oval (if any) is erased.

Examples
See examples under oval or rect. ring can be directly substituted for oval, rect, or 
frame.
355 



ring  Draw framed oval
in a graphic window
See Also

frame Draw framed rectangle in a graphic window
graphic Window for drawing sprite-based graphics
lcd Draw graphics in a patcher window
oval Draw solid oval in a graphic window
rect Draw solid rectangle in a graphic window
Graphics Overview of Max graphics windows and objects
 356



route Selectively pass the input
out a specific outlet
Input
anything If the first item of the message is the same as one of the arguments of route, the rest 

of the message is sent out the outlet that corresponds to that argument. If the first 
item does not match any of the arguments, the entire message is passed out the 
rightmost outlet.

Arguments
anything Optional. Arguments can be a mix of ints, floats, or symbols. The number of 

arguments determines the number of outlets, in addition to the rightmost outlet. 
Each argument assigns a name or a number to an outlet. If there is no argument, 
there is one other outlet, which is assigned the number 0.

Output
anything The first item of any message received in the inlet is compared with the argu-

ments. If it matches one of the arguments, the rest of the message is sent out the 
specified outlet. Otherwise, the entire message is passed out the rightmost outlet.

bang If the first item of a message matches one of the arguments, but the message has 
no additional items, bang is sent out the specified outlet.

Examples

Arguments assign names or numbers to the outlets, and route the input to the correct outlet
357 



route  Selectively pass the input
out a specific outlet
See Also

Bucket Pass a number from outlet to outlet, out each one in turn
forward Send remote messages to a variety of objects
gate Pass the input out a specific outlet
pack Combine numbers and symbols into a list
receive Receive messages without patch cords
route Selectively pass the input out a specific outlet
select Select certain inputs, pass the rest on
send Send messages without patch cords
sprintf Format a message of words and numbers
zl Multi-purpose list processor
Tutorial 17 Gates and switches
 358



rslider Display or change
a range of numbers
Input
int In left inlet: The number sets the minimum limit of a range displayed as a colored 

region on the rslider, and causes the minimum and maximum values of that range 
to be sent out. A number that exceeds the limits of the rslider itself will be limited 
to stay within the rslider.

In right inlet: The number is stored as the maximum limit of the range displayed 
in color on the rslider. A number that exceeds the limits of the rslider itself will be 
limited to stay within the rslider.

The minimum and maximum values can also be set (and sent out) by dragging 
with the mouse across a range in the rslider.

list In left inlet: The first two numbers in the list are used to set the minimum and 
maximum values of the displayed range, and are sent out.

bang In left inlet: Sends out the minimum and maximum values of the currently dis-
played range.

color The word color, followed by a number from 0 to 15, specifies a color for the range 
being displayed in the rslider—one of the object colors which are also available via 
the Color command in the Object menu.

float Converted to int.

mult In left inlet: The word mult followed by a number, specifies a multiplier value. The 
rslider object’s value will be multiplied by this number before it is sent out the out-
let. The default value is 1.

set In left inlet: The word set, followed by two numbers, sets the minimum and maxi-
mum values of the currently displayed range, without sending them out the out-
lets.

size In left inlet: The word size, followed by a positive number, determines the total 
range of the rslider. The rslider will range from 0 to one less than the specified size. 
A size message smaller than 1 will be automatically set to 2. By default, the size of 
an rslider is 128.

Inspector
The behavior of an rslider object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any rslider object displays the rslider Inspector 
in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.
359



rslider Display or change
a range of numbers
The rslider Inspector lets you enter a Maximum value. Numbers received in the 
inlet are automatically limited between 0 and the number 1 less than the specified 
maximum value. The default range value is 128. The rslider Inspector also lets you 
specify a Multiplier. The rslider object’s value will be multiplied by this number 
before it is sent out the outlet. The default multiplier value is 1.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
int The maximum value of the displayed range is sent out the right outlet, and the 

minimum value is sent out the left outlet. Output is triggered by a new minimum 
value (or a bang) received in the left inlet, or by clicking or dragging the mouse in 
the rslider.

Examples

Output minimum and maximum values, to set the range of another object

See Also

hslider Output numbers by moving a slider onscreen
pictctrl Picture-based control
pictslider Picture-based slider
slider Output numbers by moving a slider onscreen
split Look for a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
360



rtin Output received
MIDI real time messages
Input
(MIDI) rtin receives MIDI real time messages received from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming MIDI messages. The word port is 
optional and may be omitted.

(mouse) Double-clicking on an rtin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming MIDI real time mes-

sages. If there is no argument, rtin receives from port a (or the first input port 
listed in the MIDI Setup dialog.)

Output
int MIDI real time messages (MIDI clock, start, stop, and continue) received from 

the specified port are sent out the outlet.

Examples

MIDI real time messages can be used to synchronize Max with external events
361 



rtin  Output received
MIDI real time messages
See Also

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals 
midiin Output received raw MIDI data
timein Report time from external time code source
seq Sequencer for recording and playing MIDI
MIDI MIDI overview and specification
OMS Using Max with OMS
Tutorial 16 More MIDI ins and outs
 362



savedialog Open a dialog to ask for
a filename for saving
Input
bang Causes a standard Save As dialog box to appear, allowing the user to type in a file-

name and choose a folder location. The resulting location and filename are out-
put as a symbol.

set The word set, followed by a four-letter symbol (e.g., TEXT, MAXB) which specifies a 
file type, sets the savedialog object to display the desired file type without opening 
the dialog box. The chosen file type is sent out the middle outlet when the user 
chooses Save in the dialog box.

anything One or more type codes up to four characters sets the list of types displayed in the 
dialog box. Example type codes for Macintosh files are TEXT for text files, maxb for 
Max binary format patcher files, and AIFF for AIFF format audio files. The symbol 
fold specifies that the dialog box should let the user choose only folders.

Arguments
anything Optional. Sets one or more file types that will be displayed as choices for the user. 

The symbol fold specifies that the dialog box should let the user choose only fold-
ers.

Output
symbol Out left outlet: The complete pathname of the file as a symbol. A full pathname 

looks like this:

 ’MyDisk:Max Folder:extras:filename’

symbol Out middle outlet: The four-letter symbol which specifies the filetype currently 
selected.

bang Out right outlet: If the user chooses Cancel in the dialog box, a bang is sent out.
363 



savedialog  Open a dialog to ask for
a filename for saving
Examples

Select a folder or a specific file type for file saving

See Also

dialog Open a dialog box for text entry
filedate Report the modification date of a file
filein Read in a file of binary data
filepath Report information about the current search path
opendialog Open a dialog to ask for a file or folder
 364



screensize Output the
monitor size

365 

Input
bang Triggers the output of the main screen size and total multi-monitor screen 

bounding rectangle out the outlets.

Arguments
None.

Output
list Out left outlet: The bounding coordinates of the main screen: left is first, followed 

by top, right, and bottom.

Out right outlet: The bounding coordinates of all monitors. If there is only one 
monitor, the output will be the same as with the left outlet.

Examples

screensize reports the coordinates of the main and total screen areas

See Also

gestalt Inquire about current system
menubar Put up a custom menu bar
thispatcher Send messages to a patcher



select / sel  Select certain inputs,
pass the rest on
Input
any message In left inlet: If the input matches one of the arguments, a bang is sent out the outlet 

that corresponds to that argument. Otherwise, the input is passed out the right-
most outlet. 

Note: select never considers an int to be a match for a float argument, or vice versa, 
even if their values are equal. For example, 4.0 is not considered a match for the 
argument 4, and 4 is not a match for 4.0.

int In right inlet: Replaces the value of the argument. The right inlet exists only if 
there is a single int argument.

bang In left inlet: Converted to symbol bang and treated as any other symbol.

Arguments
anything Optional. The arguments can be a mix of ints, floats, or symbols. The number of 

arguments determines the number of outlets in addition to the rightmost outlet. 
If there is no argument, there is only one other outlet, which is assigned the inte-
ger number 0.

int If there is a single int argument (or if there are no arguments) a second inlet is cre-
ated on the right. Numbers received in that inlet are stored in place of the argu-
ment. If there is more than one argument, or if the only argument is not an int, the 
right inlet is not created.

Output
bang If the number or symbol received in the left inlet is the same as one of the argu-

ments, a bang is sent out the outlet that corresponds to that argument.

anything If the number or symbol received in the left inlet does not match any of the argu-
ments, it is passed out the rightmost outlet.

Examples

Arguments assign names or numbers to the outlets, and a bang is sent when the input matches them
 366



select / sel Select certain inputs,
pass the rest on
See Also

if Conditional statement in if/then/else form
match Look for a series of numbers, output it as a list
route Selectively pass the input out a specific outlet
== Compare two numbers, output 1 if they are equal
Tutorial 17 Gates and switches
367 



 368

send / s  Send messages
without patch cords

Input
anything A message received in the inlet is sent out the outlet of any receive object that has 

the same name, even if the receive is in another loaded patch.

(mouse) Double-clicking on a send object opens all windows containing receive objects 
with the same name.

Arguments
any symbol Obligatory. Gives a name to the send object.

Output
anything There are no outlets. A message received in the inlet of send is sent out the outlet of 

any receive with the same name, even if the receive is in another loaded patch.

Examples

Virtual connections exist between all send and receive objects that share the same name

See Also

forward Send remote messages to a variety of objects
message Send any message
pv Share variables specific to a patch and its subpatches
receive Receive messages without patch cords
value Share a stored message with other objects
Tutorial 24 send and receive



seq Sequencer for recording
and playing MIDI
Input
bang Starts playing the sequence stored in seq.

start The word start by itself has the same effect as bang. The word start, followed by a 
number, plays the stored sequence at a tempo determined by the number. The 
message start 1024 indicates normal tempo. If the number is 512, seq plays the 
sequence at half the original recorded speed, start 2048 plays it back at twice the 
original speed, and so on.

The message start -1 starts the sequencer, but rather than follow Max’s millisecond 
clock, seq waits for a tick message to advance its clock. See the tick message, below.

record Starts recording MIDI messages received in the inlet.

stop Stops the sequencer if it is recording or playing. A stop message need not be 
received when switching directly from playing to recording, or vice-versa.

append Starts recording at the end of the stored sequence, without erasing the existing 
sequence.

int When seq is recording, numbers received in its inlet are interpreted as bytes of 
MIDI messages (usually from midiformat or midiin). MIDI channel messages and 
system exclusive messages can be recorded by seq, but seq does not respond 
directly to MIDI real time messages such as start, stop, MIDI clock, etc.

float Converted to int.

tick After seq has received a start -1 message, it waits for tick messages to advance its 
clock. In order to play the sequence at its original recorded tempo, seq must 
receive 48 tick messages per second. This is equivalent to 24 ticks per quarter note 
(the standard for a MIDI Clock message) at a tempo of 120MM. By using tick 
messages to advance the sequencer, you can vary the tempo of playback or syn-
chronize seq with another timing source (such as incoming MIDI Clock mes-
sages).

delay The word delay, followed by a number, sets the onset time, in milliseconds, of the 
first event in the recorded sequence. All events in the sequence are shifted so that 
the first event occurs at the specified onset time.

hook The word hook, followed by a float, multiplies all the event times in the stored 
sequence by that number. For example, if the number is 2.0, all event times will be 
doubled, and the sequence will play back twice as slowly. Multiplications can even 
be performed while the sequence is playing.

write Calls up the standard Save As dialog box, so that a recorded sequence can be 
saved as a separate file. If you want to edit the sequence with the text editor, check 
the Save As Text option in the dialog box.
369 



seq  Sequencer for recording
and playing MIDI
read With no arguments, read calls up the standard Open Document dialog box, so 
that a previously recorded sequence can be read into seq, replacing the current 
sequence. With a symbol as an argument, read searches for a file with the specified 
name to read into the seq object.

Note: The seq object reads and writes single track (format 0) standard MIDI files. 
It can also read and write text files in which each line consists of a start time in mil-
liseconds (the time elapsed since the beginning of the sequence) followed by the 
(space-separated) bytes of a MIDI message recorded at that start time. For exam-
ple,

0 144 60 112
1000 144 60 0
1500 192 31
1500 144 60 112
2500 144 60 0

plays the note middle C on channel 1 for one second, then half a second later 
changes to program number 31 and plays middle C again for one second.

print Prints the first sixteen events of the recorded sequence in the Max window.

dump Opens a standard Open Document dialog box, to select a saved sequence or stan-
dard MIDI file. The selected file is opened as text in a new Untitled text window, 
which can be edited and saved.

Arguments
any symbol Optional. Specifies the name of a file to be read into seq automatically when the 

patch is loaded.

Output
int Out left outlet: When bang or start is received in the inlet, the sequence stored in 

seq is sent out the outlet in the form of individual MIDI bytes, usually to be sent to 
midiparse or midiout.

bang Out right outlet: Indicates that seq has finished playing the current sequence. 
(The bang is sent out immediately before the final event of the sequence is played.)
 370



seq Sequencer for recording
and playing MIDI
Examples

Record and play back live performance, or play a pre-recorded sequence

See Also

coll Store and edit a collection of different messages
follow Compare a live performance to a recorded performance
mtr Multi-track sequencer
Tutorial 35 seq and follow
Detonate Graphic editing of a MIDI sequence
Sequencing Recording and playing performances with MIDI
371 



serial  Send and receive characters
from serial ports and cards
The serial object works only with ports and devices supported by the standard serial driver. It does 
not work with USB ports and devices, unless a USB to Serial adaptor is connected.

Input
int Sends the number out the serial port accessed by the serial object. Numbers out-

side the range 0-255 are not sent.

list Sends each number in the list out the serial port, in order from left to right. Num-
bers outside the range 0-255 are not sent.

bang Sends out the serial object’s outlet (as an integer) each character received on the 
serial port since the last bang message was received, in the order the characters 
were received.

bufsize Sets the input buffer size of the serial port used by the serial object to the value fol-
lowing the word bufsize. The message bufsize 0 restores the serial port’s default 
buffer size, which is hardware-dependent.

baud The word baud, followed by a valid speed value (see Arguments section below for a 
list of valid speeds), changes the rate of the serial port used by the serial object.

Arguments
symbol a-z Obligatory. Specifies the serial port to be used by the object. a specifies the first 

logical serial port in the computer, b - z specify additional ports. If the port is cur-
rently in use when the serial object is instantiated, an error message will be dis-
played and the object will not function.

int Optional. Specifies the baud rate of the serial port. The default value is 4800 baud. 
Other allowable rates are 300, 600, 1200, 1800, 2400, 3600, 7200, 9600, 19200, 38400, 
and 57600.

int Optional. After the baud rate, the next argument specifies the number of data bits 
for the serial port. The default is 8 data bits. Other possible values are 5, 6, and 7.

int Optional. The next argument specifies the number of stop bits for the serial port. 
The default is 1. Other possible values are 1.5 and 2.

symbol Optional. The next argument specifies the parity for the serial port. The default is 
no parity (no); other possible values are even and odd.

Output
(serial output) When a number or list is received in its inlet, serial sends the data out the specified 

serial port at the current baud rate.
 372



serial Send and receive characters
from serial ports and cards
int Out left outlet: When serial receives a bang message and characters have been 
received in the serial port, the received characters are sent as numbers in the order 
they were received.

Out right outlet: Reports error messages.

Examples

When the button is clicked, this patch resets the modem, begins
polling for a response, and stops polling when a response has been received

See Also

match Look for a series of numbers, output it as a list
spell Convert input to ASCII codes
vdp Control a videodisc player through the serial port
373 



setclock  Control the clock speed of
timing objects remotely
Input
bang In left inlet: Sends out the current time value, according to the setclock object’s 

own clock. Timing objects such as clocker, line, metro, pipe, tempo, and timeline 
can use setclock as their clock source instead of Max’s regular millisecond clock. 

int or float In left inlet: The meaning of the number depends on the second typed-in argu-
ment, which identifies the setclock object’s mode of operation. If the mode is 
pass[ive] (the default mode), the number sets an absolute clock time which timing 
objects may use by comparing it to their initial time value. If the mode is 
add[itive], the number is added to the setclock object’s current clock time. If the 
mode is interp[olate], setclock will change its clock time incrementally by that 
amount, over a time period determined by the time elapsed since the previous 
number was received. (However, negative numbers cause an immediate decrease 
in the clock time.) If the mode is ext[ernal] or mul[tiplicative], the number is sim-
ply ignored. If the mode is mul[tiplicative], the number is used as a multiplier for 
associated timing objects. For instance the number 0.5 halves the rate of increase 
(speed) of the associated timing objects. If the mode is ext[ernal], the number is 
ignored.

In right inlet: Sets the time interval, in milliseconds, at which the setclock will 
report its clock information to associated timing objects. The default is 5 millisec-
onds.

set If the setclock is in pass[ive] or add[itive] mode, the word set followed by a number 
sets its clock time to that number. If setclock is in any other mode, the set message 
is ignored.

reset If setclock is in interp[olate] mode, the word reset followed by a number sets its 
clock time to that number, then repeats the last interpolation it performed.

Arguments
any symbol Obligatory. The first argument is the name of the setclock object, by which timing 

objects such as clocker, line, metro, pipe, tempo, and timeline can refer to the set-
clock. Those timing objects—once they have received the message clock followed 
by the name of a setclock object—use that setclock as their timing source instead of 
Max’s regular millisecond clock. The setclock object need not be in the same 
patcher as the timing objects that refer to it. More than one setclock object may 
exist with the same name; setclock objects with the same name share the same 
clock time information. (Note: Different setclock objects that share the same name 
argument can have different mode arguments typed in, but they will in fact oper-
ate with the mode of whichever setclock was first loaded with that name. Thus, set-
clock objects with the same name but different modes may behave unpredictably, 
since the order in which they are loaded by Max is often unknown.)
 374



setclock Control the clock speed of
timing objects remotely
The second (optional) argument describes the mode of clock operation this set-
clock object will have. The possible modes for the second argument are:

pass Specifies passive mode. In this mode, the setclock object’s current clock time is set 
by a number received in the left inlet, and associated timing objects will follow 
that clock time just as if it were a regularly progressing millisecond clock. If no 
second argument is present, the mode is pass by default.

add Specifies additive mode. A number received in the left inlet is added to the current 
clock time to determine the new clock time.

mul Specifies multiplicative mode. The number received in the left inlet is used as a fac-
tor by which all associated timing objects will modify their time settings. For 
example, a factor of 2.0 will cause all timing objects that are using the setclock as 
their clock source to double their time values (that is, to halve their speed). An 
alternative (and perhaps more truthful) way to conceptualize the behavior of mul 
mode is to think of the incoming float as a divisor by which setclock divides the 
speed at which its own clock time progresses. Thus, when it receives the number 
2.0 it divides its own clock speed by 2.0, causing the objects which are following 
that clock to progress twice as slowly.

interp Specifies interpolate mode. The number received in the left inlet is gradually 
added to the current time of setclock, over a time period determined by the 
amount of time elapsed since the previous number was received. During that time 
period, setclock linearly interpolates to set its clock to the intermediate values.

float If the second argument is mul, an optional third argument specifies a multiplier for 
the time of all associated timing objects. If no third argument is present, the mul-
tiplier is 1.0 by default.

ext Specifies external clock mode. When OMS is installed, setclock will be synchro-
nized with the time information from OMS Timing. Any timing object that gets 
its time from a setclock in ext[ernal] mode is therefore in fact getting its time, in 
milliseconds, from OMS Timing. In order for the time to progress, OMS Timing 
must be started by any application that supports it. It can be started by Max with a 
start message to the timeout object.

Additional possible modes for the second argument are:

beats Same as ext, except that the time units obtained from OMS Timing are ticks (frac-
tions of a quarter note) rather than milliseconds. Any timing object that gets its 
time from a setclock in beats mode substitutes ticks for milliseconds as its unit of 
measure. The rate at which those units pass depends on the current beat tempo of 
OMS Timing (which can be modified by Max with a tempo message to timeout) 
and the granularity of ticks Max is using to report the beats to setclock (which can 
be modified with a granularity message to Max). As with ext mode, in order for the 
time to progress, OMS Timing must be started.
375 



setclock  Control the clock speed of
timing objects remotely
smpte Same as ext, except that the time units obtained from OMS Timing are bits (80ths 
of a frame) at OMS Timing’s current SMPTE frame rate rather than milliseconds. 
Any timing object that gets its time from a setclock in smpte mode substitutes bits 
for milliseconds as its unit of measure. The frame rate can be changed with a for-
mat message to the timeout object. As with ext mode, OMS Timing must be started 
in order for the time to progress.

Output
int When bang is received in the left inlet, setclock sends its current time reading out 

the outlet.

Examples

See Also

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals
timeline Time-based score of Max messages
timer Report elapsed time between two events
Timeline Creating a graphic score of Max messages

setclock becomes the clock for metro setclock modifies the time for clocker
 376



sin Sine function
for signals

377 

Input
float or int Input to a sine function in radians.

Arguments
None.

Output
float or int The sine of the input in radians.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



 378

sinh  Hyperbolic sine function
for signals

Input
float or int Input to a hyperbolic sine function.

bang In left inlet: Calculates the hyperbolic sine of the number currently stored. If there 
is no argument, sinh initially holds 0.

Arguments
float or int Optional. Sets the initial value for the hyperbolic sine function.

Output
float or int The hyperbolic sine of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
tanh Hyperbolic tangent function



slider Output numbers by
moving a slider onscreen
Input
int The number received in the inlet is displayed graphically by slider, and is passed 

out the outlet. Optionally, slider can multiply the number by some amount and 
add an offset to it, before sending it out the outlet.

(mouse) The slider will also send out numbers in response to dragging on it directly with 
the mouse. 

float Converted to int.

bang Sends out the number currently stored in the slider.

min The word min, followed by a number, sets a value that will be added to the slider 
object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The slider 
object’s value will be multiplied by this number before it is sent out the outlet. The 
multiplication happens before the addition of the Offset value. The default value 
is 1.

set The word set, followed by a number, resets the value displayed by the slider, with-
out triggering output.

size The word size, followed by a number, sets the range of the slider object. The default 
value is 128.

Inspector
The behavior of a slider object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any slider object displays the slider Inspector 
in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

The slider Inspector lets you enter a Slider Range value. Numbers received in the 
inlet are automatically limited between 0 and the number 1 less than the specified 
range value. The default range value is 128. You can specify an Offset value which 
will be added to the number, after multiplication. The default offset value is 0. The 
slider Inspector also lets you specify a Multiplier. The slider object’s value will be 
multiplied by this number before it is sent out the outlet. The multiplication hap-
pens before the addition of the Offset value. The default multiplier value is 1.
379



slider Output numbers by
moving a slider onscreen
Arguments
The range of slider is set by selecting it (when the patcher window is unlocked) 
and choosing Get Info… from the Object menu. The slider automatically resizes 
itself to accommodate the new range.

The Inspector also provides a Multiplier—by which all numbers will be multi-
plied before being sent out, and an Offset—which will be added to the number, 
after multiplication. A newly created slider has a range of 128, a multiplier of 1, 
and an offset of 0.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Output
int Numbers received in the inlet, or produced by dragging on slider with the mouse, 

are first multiplied by the multiplier, then have the offset added to them, then are 
sent out the outlet.

Although the numbers that can be output by dragging are limited by the range of 
the slider, numbers received in the inlet are not limited before they are sent out the 
outlet.
 380



slider Output numbers by
moving a slider onscreen
Examples

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
uslider Output numbers by moving a slider onscreen
Tutorial 9 Using the slider
Tutorial 14 Sliders and dials

Produce output by dragging onscreen... or display numbers passing through
381



 382

speedlim  Limit the speed with which
messages can pass through

Input
anything In left inlet: The message is passed out the outlet, provided that a certain mini-

mum time has elapsed since the previous output. Otherwise, the message is held 
until that amount of time has passed (or until it is overwritten by another incom-
ing message).

int In right inlet: The number is stored as the minimum amount of time, in millisec-
onds, between successive outputs.

clock In left inlet: The word clock, followed by the name of an existing setclock object, 
causes the time interval of speedlim to be controlled by that setclock rather than by 
Max’s internal millisecond clock. The word clock by itself sets speedlim back to 
using Max’s regular millisecond clock.

Arguments
int Optional. Sets an initial minimum time between outputs, in milliseconds. If there 

is no argument, the minimum time is 0.

Output
anything A message received in the left inlet is sent out the outlet, provided the specified 

minimum amount of time has elapsed since the previous output. Otherwise, 
speedlim waits until that amount of time has passed, then sends out the last mes-
sage it has received since the previous output. 

Examples

Used to reduce a heavy flow of numbers, or to turn a continuous flow into discrete steps

See Also

delay Delay a bang before passing it on
mousefilter Pass numbers only when the mouse button is up
thresh Combine numbers into a list, when received close together
timer Report elapsed time between two events
Tutorial 16 More MIDI ins and outs



spell Convert input
to ASCII codes
Input
any symbol The ASCII value of each letter, digit, or other character in the symbol is sent out 

the outlet, one character at a time.

int The ASCII value of each of the digits of the number is sent out the outlet, one digit 
at a time.

list Each int in the list is converted to ASCII as described above, and a space character 
(32) is sent out between items in the list. Any float or symbol items in the list are 
ignored.

any message If the message begins with a symbol, all int and symbol items in the message are 
converted to ASCII one character at a time, and a space character (32) is placed 
between them. Any float items in the list are ignored. If the message begins with a 
float, both floats and symbols are ignored.

Arguments
int Optional. The first argument sets the minimum output size. Any input that 

doesn’t “spell” to the minimum length is followed by enough fill characters (the 
default is the space character, 32 in ASCII) to satisfy the minimum requirement. 
A second optional argument specifies the fill character to use instead of 32. If you 
want to use ‘0’ as a fill character, use any negative number as a second argument to 
spell.

Outputs
int The ASCII representation of the input is sent out one character at a time.

Examples

Using the spell object, a modem command string or a synthesizer patch name can be translated from 
human terms into computer terms, and sent out the serial port in ASCII representation
383 



spell  Convert input
to ASCII codes
See Also

key Report key presses on the computer keyboard 
keyup Report key releases on the computer keyboard 
message Send any message
sprintf Format a message of words and numbers
 384



split Look for a
range of numbers
Input
int or float In left inlet: If the number is within a specified range, it is sent out the left outlet. 

Otherwise, it is sent out the right outlet.

In middle inlet: The number is stored as the minimum value in the range of num-
bers looked for by split. If the number is an int, then the split object will convert all 
float values to ints.

In right inlet: The number is stored as the maximum value in the range of num-
bers looked for by split.

list In left inlet: The second number is stored as the minimum value of the range, and 
the third number is stored as the maximum value of the range. The first number is 
then compared to the range, and is sent out one of the two outlets.

Arguments
int or float Optional. The first argument sets the minimum value to be sent out the left outlet. 

If the first argument is an int, then the split object will convert all float values to 
ints. The second argument sets the maximum value to be sent out the left outlet. If 
the first argument to split is an int, the output is int. If it is float, the output is float. 
This is true regardless of the type of the input.

Output
int If the number received in the left inlet is greater than or equal to the specified min-

imum, and it is less than or equal to the specified maximum, it is sent out the left 
outlet. Otherwise, it is sent out the right outlet. 

Examples

Used to divert a certain range of numbers to a different destination
385 



split  Look for a
range of numbers
See Also

route Selectively pass the input out a specific outlet
select Select certain inputs, pass the rest on
<= Is less than or equal to, comparison of two numbers
>= Is greater than or equal to, comparison of two numbers
Tutorial 20 Using the computer keyboard
 386



spray Distribute an integet
to a numbered outlet

387 

Input
list The first number in the list specifies the outlet number; the second is the number 

to send out that outlet. If there are additional numbers in the list, they are sent out 
the subsequent outlets to the right of the one specified by the first number in the 
list. The list may contain only ints; floats (or symbols) will be ignored.

Arguments
int Optional. The first argument sets the number of outlets. If there is no argument 

present, the object has two outlets. The second argument sets an offset for the 
numbering of the outlets. If the second argument is not present, the outlets are 
numbered beginning with 0.

Output
int When a list of ints is received by spray, the first number is used to specify an outlet, 

and the second number is sent out that outlet. Any additional numbers in the list 
are sent out subsequent outlets to the right. You can connect the outlet of an env or 
envi object to the inlet of a spray object to distribute the envelope’s values to sepa-
rate outlets.

Examples

Used to break up a list and send the items out specific outlets

See Also

cycle Send a stream of data to individual outlets
env Script-configurable envelope editor
envi Script-configurable envelope in a patcher window
funnel Map a number to a list which identifies its inlet 
gate Pass the input out a specific outlet
route Selectively pass the input out a specific outlet
unpack Break a list up into individual messages



sprintf  Format a message of
words and numbers
Input
int May be received in any inlet that corresponds to a %ld or %c argument. The num-

ber will be stored in place of that argument. A %c argument will convert the int to 
its ASCII character equivalent.

float May be received in any inlet that corresponds to a %f argument. The number will 
be stored in place of that argument.

symbol May be received in any inlet that corresponds to a %s argument. The number will 
be stored in place of that argument.

list In left inlet: Each item in the list is treated as if it had been received in a separate 
inlet, up to the number of inlets.

bang In left inlet: Formats the message using the values currently stored.

Any of the above messages in the left inlet will format the message and send it out. 
If no value has been received for a changeable number argument (%ld or %f), 0 
will be substituted for that argument. If no value has been received for a %s or %c 
argument, that argument will be left blank.

Arguments
symout Optional. If the first argument is the word symout, the sprintf object outputs the 

string it generates as a single symbol. Otherwise the output is a list of symbols 
and/or numbers. The word symout itself is not included in the output of sprintf.

Obligatory. The arguments form a message to be sent out, in a format resembling 
the C programming language. The arguments may be words, numbers, or 
changeable arguments for incoming symbols (%s), ints (%ld), floats (%f), and ints 
that are to be formatted as ASCII characters (%c). The number of inlets is deter-
mined by the number of changeable arguments, with each inlet corresponding to 
a changeable argument, in order.

Output
anything The message specified by the typed-in argument(s) is formatted and sent out 

with substitutions made for the changeable arguments.
 388



sprintf Format a message of
words and numbers
Examples

Changeable arguments are replaced by values received in the inlets.

See Also

fromsymbol Transform a symbol into individual numbers or messages
key Report key presses on the computer keyboard 
keyup Report key releases on the computer keyboard 
message Send any message
spell Convert input to ASCII codes
tosymbol Convert messages, numbers, or lists to a single symbol
389 



 390

stripnote  Filter out note-off messages,
pass only note-on messages

Input
list In left inlet: The second number is stored as a velocity, and the first number is 

treated as the pitch, of a MIDI note-on message. If the second number is not 0, it 
is sent out the right outlet, and the first number is sent out the left outlet. If the 
second number is 0, nothing is sent out.

int In left inlet: The number is treated as a pitch value. If the velocity value currently 
held by stripnote is not 0, then the velocity is sent out the right outlet and the pitch 
is sent out the left outlet.

In right inlet: The number is stored as a velocity to be paired with pitch numbers 
received in the left inlet.

float Converted to int.

Arguments
None.

Output
int Out left outlet: The pitch value received in the left inlet is sent out, provided the 

velocity is not 0.

Out right outlet: The velocity value of a note-on pair is sent out, provided it is not 
0. 

Examples

Repeated pitch values and 0 velocities caused by note-off messages can be filtered out

See Also

makenote Generate a note-off message, following each note-on
sustain Hold note-off messages, output them on command
Tutorial 13 Managing note data



strippath Get a filename
from a full pathname

391 

Input
symbol A full pathname as a symbol. A full pathname looks like this:

 ’MyDisk:Max Folder:extras:filename’

Arguments
None.

Output
 symbol Out left outlet: The file name, with all path information preceding it removed.

int Out right outlet: If the file was found within the current Max search path a 1 is sent 
out the right outlet. A 0 is sent otherwise.

Examples

strippath removes path information from a file pathname, and leaves you the name of the file

See Also

absolutepath Convert a file name to an absolute path
dropfile Define a region for dragging and dropping a file
opendialog Open a dialog to ask for a file or folder
relativepath Convert an absolute to a relative path
savedialog Open a dialog to ask for a filename for saving



substitute  Subsitute a symbol for
another symbol in a message
Input
anything In left inlet: The input is echoed to the output, but if the message received con-

tains an element matching the match symbol or number, the element is replaced 
by the replacement symbol or number when the message is repeated to the out-
put.

anything In right inlet: The substitute object accepts a message of two numbers or symbols 
in its right inlet. The first number or symbol specifies the match, which identifies 
what should be replaced in an incoming message.

set In right inlet: Same as anything, except that the word set is ignored.

Arguments
anything Optional. The first number or symbol specifies the match, which identifies what 

should be replaced in an incoming message. If there are no arguments, the          
substitute object does nothing.

anything Optional. The second number of symbol specifies the replacement for the match.

Output
anything Out left outlet: The input message is echoed to the output with elements matching 

the match symbol or number replaced by the replacement number or symbol.

bang Out right outlet: If no substitution occurred when sending out the incoming mes-
sage, a bang is sent.

Examples

substitute can translate messages output by one object to what’s expected by another object
 392



substitute Subsitute a symbol for
another symbol in a message
See Also

route Selectively pass the input out a specific outlet
sprintf Format a message of words and numbers
zl Multi-purpose list processor
393 



 394

suspend  Reports when application
is suspended and resumed

Input
None.

Arguments
None.

Output
int Out left outlet When the application is suspended (made to go into the back-

ground), a 1 is output. When the application is resumed (restored to being in the 
foreground), a 0 is output. 

Examples

 suspend lets you activate/deactivate processes if Max is the foreground application

See Also

active Send 1 when patcher window is active, 0 when inactive
gestalt Inquire about current system



sustain Hold note-off messages,
output them on command
Input
list In left inlet: The second number is stored as the velocity, and the first number is 

treated as the pitch, of a MIDI note-on message. If the pair is a note-on (the veloc-
ity is not 0), the velocity is sent out the right outlet and the pitch is sent out the left 
outlet. Note-offs (note-ons with a velocity of 0) are either passed on immediately 
or held by sustain. 

int In left inlet: The number is the pitch value of a pitch-velocity pair. If the velocity 
value currently held by sustain is not 0, then the pair is sent out immediately. If the 
velocity is 0, the note-off is either sent out or held, depending on whether sustain 
is turned on.

In middle inlet: The number is stored as a velocity to be paired with pitch num-
bers received in the left inlet.

In right inlet: If the number is not 0, sustain is turned on, and all note-offs are held. 
If the number is 0, sustain is turned off, and all note-offs are sent out immediately.

float Converted to int.

Arguments
None.

Output
int Out left outlet: The pitch value of a pitch-velocity pair.

Out right outlet: The velocity value of a pitch-velocity pair.

Note-on pairs are always sent out immediately. If sustain is turned on, note-offs 
are held until it is turned off. Otherwise, note-offs are sent out immediately. 

Examples

Like the sustain pedal of a piano, sustain releases all held notes at one time
395 



sustain  Hold note-off messages,
output them on command
See Also

flush Provide note-offs for held notes
makenote Generate a note-off message, following each note-on
stripnote Filter out note-off messages, pass only note-on messages
 396



swap Reverse the sequential
order of two numbers
Input
int In left inlet: The number is sent out the right outlet, then the number in the right 

inlet is sent out the left outlet.

In right inlet: The number is stored to be sent out the left outlet when a number is 
received in the left inlet.

float The numbers are converted to int, unless there is a float argument, in which case 
the number received in the right inlet is stored as a float.

list In left inlet: The numbers are stored in swap. The first number is sent out the right 
outlet, then the second number is sent out the left outlet.

bang In left inlet: Swaps and sends out the numbers currently stored in swap.

Arguments
int or float Optional. Sets an initial value for the number that is to be sent out the left outlet. 

Float argument will cause a float to be sent out the left outlet. (The number sent 
out the right outlet is always an int.) If there is no argument, the initial value is 0.

Output
int When a number is received in the left inlet, the number in each inlet is sent out the 

opposite outlet.

float If there is a float argument, the number sent out the left outlet is a float.

Examples

Numbers are sent out in reverse order from that in which they were received
397 



swap  Reverse the sequential
order of two numbers
See Also

buddy Synchronize arriving data, output them together
fswap Reverse the sequential order of two decimal numbers
pack Combine numbers and symbols into a list
unpack Break a list up into individual numbers
Tutorial 30 Number groups 
 398



swatch Color swatch for RGB color
selection and display
The 2-dimensional colorspace of the swatch object represents hue along the horizontal axis, and 
lightness along the vertical axis. a third color dimension, saturation, may be set by means of the 
saturation message.

Input
int In left inlet: A number between 0 and 255 sets the red color component and 

causes output.

In middle inlet: A number between 0 and 255 sets the green color component and 
causes output.

In right inlet: A number between 0 and 255 sets the blue color component and 
causes output.

Note: Unlike most Max objects, input to any one of the three inlets will re-calcu-
late the current color location on the swatch, and trigger output).

float Converted to int.

(mouse) Clicking and dragging on the swatch will calculate and output the RGB color at 
the selected (x, y) position on the 2-dimensional colorspace, taking into account 
the current saturation value.

bang causes output of the current color at the selected (x, y) position on the 2-dimen-
sional colorspace, taking into account the current saturation value.

list a list of three numbers between 0 and 255 sets the three RGB color components 
(red, green, blue), refreshes the display and causes output.

set The word set, followed by a list of three numbers between 0 and 255 sets the three 
RGB color components (red, green, blue) and refreshes the display without caus-
ing output.

saturation the word saturation, followed by a number between 0 and 255 will change the color 
saturation of the displayed 2-dimensional (hue, lightness) colorspace It will also 
re-calculate the new RGB color at the selected (x, y) position and cause output.

(preset) You can save and restore the swatch object’s RGB color using a preset object.

Arguments
None.

Output
list Out left outlet: a list of three RGB (red, green, blue) color values
399 - swatch Objects



swatch Color swatch for RGB color
selection and display
int Out right outlet: the current saturation value (calculated from an RGB list input, 
or output directly after a saturation message)

Examples

Display input RGB values

See Also

colorpicker Select a color using a modal dialog
panel Colored background area
Objects swatch - 400



switch Output messages
from a specific inlet

401 

Input
int In left inlet: The number specifies an open inlet for receiving subsequent mes-

sages to be sent out the outlet. All inlets other than the designated open one are 
closed. If the number is 0, all inlets are closed.

anything In any other inlet: Any message received in an open inlet is passed out the outlet. 
Messages received in closed inlets are ignored.

float In left inlet: Converted to int.

bang In left inlet: Sends out the number of the open inlet, or 0 if all inlets are closed.

Arguments
int Optional. Specifies the number of inlets, up to 10, in addition to the leftmost inlet. 

If there is no argument, there are two additional inlets.

Output
anything If the number in the left inlet is less than 0, its absolute value is used to determine 

which inlet to open. (-1 opens inlet 1, -2 opens inlet 2, etc.) If the absolute value of 
the number is greater than the number of existing inlets, messages are received in 
the rightmost inlet.

Examples

“Listen” to only one inlet at a time, or ignore all inlets

See Also

forward Send remote messages to a variety of objects
funnel Tag data with a number that identifies its inlet
gate Pass the input out a specific outlet
Ggate Pass the input out one of two outlets
Gswitch Receive the input in one of two inlets
receive Receive messages without patch cords
send Send messages without patch cords
Tutorial 17 Gates and switches



sxformat  Prepare MIDI system
exclusive messages
Input
int In left inlet: The number replaces any $i1 arguments in the object box, and the 

entire list of arguments is evaluated and sent out the outlet, one-by-one.

In other inlets: The number is stored in place of the $i argument that corresponds 
to that inlet, until a number is received in the left inlet.

list In left inlet: The numbers in the list are used to replace the corresponding $i argu-
ments in the object box, then the list of arguments is evaluated and the numbers 
are sent out one-by-one.

bang In left inlet: Sends out the bytes of the formatted message, using the most recently 
received numbers.

Arguments
list Obligatory. The arguments are a list of numbers which represent the values of 

individual bytes of a MIDI system exclusive message. The first number should be 
240 (or 0xF0), the system exclusive status byte and the last number should be 247 
(or 0xF7), the end byte. There can be any number of values for data bytes in 
between.

Arguments for data bytes can also be in the form of a mathematical expression 
(like the expressions in expr and if objects) to be evaluated before numbers are 
sent out the outlet. The expressions can contain changeable arguments in the 
form $i, followed immediately by an inlet number (for example, $i2). The change-
able arguments are replaced by numbers received in the specified inlet. Expres-
sions used in place of numbers should be preceded by the word is, and should be 
separated from other arguments with a slash (/) on either side of the expression 
(see example).

If the value of an evaluated expression is less than 0, no number is sent out in place 
of that expression. This allows you to send variable-length system exclusive mes-
sages.

Output
int When a number is received in the left inlet, any expressions in the argument are 

evaluated and the numbers in the list are sent out one at a time, as bytes of a MIDI 
system exclusive message, for transmission by midiout.
 402



sxformat Prepare MIDI system
exclusive messages
Examples

sxformat can send a complete MIDI system exclusive message, byte-by-byte, to midiout

See Also

expr Evaluate a mathematical expression
midiout Transmit raw MIDI data
sysexin Output received MIDI system exclusive messages
Tutorial 34 Managing raw MIDI data
403 



 404

sysexin  Output received
MIDI system exclusive messages

Input
(MIDI) sysexin receives MIDI system exclusive messages from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming MIDI messages. The word port is 
optional and may be omitted.

(mouse) Double-clicking on a sysexin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming MIDI system exclu-

sive messages. If there is no argument, sysexin receives from port a (or the first 
input port listed in the MIDI Setup dialog.)

Output
int MIDI system exclusive messages received from the specified port are sent out the 

outlet, byte-by-byte.

Examples

MIDI system exclusive messages can be interpreted by a lib object

See Also

midiin Output received raw MIDI data
sxformat Prepare MIDI system exclusive messages
Tutorial 34 Managing raw MIDI data
MIDI MIDI overview and specification



table Store and graphically edit
an array of numbers
Input
list In left inlet: The second number is stored in table, at the address (index) specified 

by the first number.

int In left inlet: The number specifies an address in the table. The value stored at that 
address is sent out the left outlet. However, if a value has been received in the right 
inlet, table stores that value in the specified address, rather than sending out a 
number.

In right inlet: The number specifies a value to be stored in table. The next address 
number received in the left inlet causes the value to be stored at that address.

float Converted to int.

bang In left inlet: Same as a quantile message with a random number between 0 and 
32,768 as an argument.

cancel In left inlet: Causes table to forget a number received in the right inlet, so that the 
next number received in the left inlet will send out a number, rather than storing a 
number at that address.

clear In left inlet: Sets all values in the table to 0.

const In left inlet: The word const, followed by a number, stores that number at all 
addresses in the table.

dump In left inlet: Sends all the numbers stored in the table out the left outlet in imme-
diate succession, beginning with address 0.

flags In left inlet: Changes the table object’s saving options, which can be found in the 
Inspector (see above). The word flags is followed by two number arguments. The 
first argument affects the Save with patcher option, and the second argument 
affects the Don’t Save option. If the argument is non-zero the option is checked; if 
the argument is 0 the option is unchecked. For example, the message flags 1 1 will 
cause the table object’s contents to be saved as part of the patch that contains it, 
and Max will not ask to save any changes that are made to the table.

fquantile In left inlet: The word fquantile, followed by a number between 0 and 1, multiplies 
the number by the sum of all the numbers in the table. Then, table sends out the 
address at which the sum of the all values up to that address is greater than or 
equal to the result.

getbits In left inlet: Gets the value of one or more specific bits of a number stored in the 
table, and sends that value out the left outlet. The word getbits is followed by three 
number arguments. The first argument is the address being referred to; the sec-
ond argument is the starting bit location in the number stored at that address (the 
bit locations are numbered 0 to 31, from the least significant bit to the most signif-
405 



table  Store and graphically edit
an array of numbers
icant bit); and the third argument specifies how many bits to the right of the start-
ing bit location should be sent out. The specified bits are sent out the outlet as a 
single decimal integer.

For example, the message getbits 61 4 3 will look at address 61 in the table, start at 
bit location 4 (the fifth bit from the right), and send out the decimal number that 
corresponds to the 3 bits starting at that location. So, suppose that address 61 of 
the table stores the number 87. The binary form of 87 is 1010111. The 3 bits 
starting at bit location 4 are 101, which is the binary form of the decimal integer 
5, so 5 is the number that is sent out the outlet.

goto In left inlet: The word goto, followed by a number, sets a pointer to the address 
specified by the number. The pointer is set at the beginning of the table initially.

inv In left inlet: The word inv, followed by a number, finds the first value which is 
greater than or equal to that number, and sends the address of that value out the 
left outlet.

length In left inlet: Sends the length (size) of the table out the left outlet.

load In left inlet: Puts the table in load mode. In load mode, every number received in 
the left inlet gets stored in the table, beginning at address 0 and continuing until 
the table is filled (or until the table is taken out of load mode by a normal message). 
If more numbers are received than will fit in the size of the table, excess numbers 
are ignored.

max Sends the maximum value stored in the table out the left outlet.

min Sends the minimum value stored in the table out the left outlet.

next In left inlet: Sends the value stored in the address pointed at by the goto pointer out 
the left outlet, then sets the pointer to the next address. If the pointer is currently 
at the last address in the table, it wraps around to the first address.

normal In left inlet: Undoes a prior load message; takes the table out of load mode and 
reverts it to normal operation.

open In left inlet: Opens the table object’s graphic editor window and brings it to the 
foreground. Double-clicking on the table object in a locked patcher has the same 
effect.

prev In left inlet: Causes the same output as the word next, but the pointer is then decre-
mented rather than incremented. If the pointer is currently at the first address in 
the table, it wraps around to the last address.

quantile In left inlet: The word quantile, followed by a number, multiplies the number by 

the sum of all the numbers in the table. This result is then divided by 215 (32,768). 
 406



table Store and graphically edit
an array of numbers
Then, table sends out the address at which the sum of all values up to that address 
is greater than or equal to the result.

read In left inlet: The word read, followed by a name, opens and reads data values from 
a file in Text or Max binary format. Without an argument, read opens a standard 
Open Document dialog for choosing a file to read values from. If the file contains 
valid data, the entire contents of the existing table are replaced with the data.

refer In left inlet: The word refer, followed by the name of another table, sets the receiv-
ing table object to read its data values from the named table.

send The word send, followed by the name of a receive object, followed by an address 
number, sends the value stored at that address to all receive objects with that 
name, without sending the value out the table object’s outlet.

set In left inlet: The word set, followed by a list of numbers, stores values in certain 
addresses. The first number after the word set specifies an address. The next num-
ber is the value to be stored in that address, and each number after that is stored in 
a successive address.

setbits In left inlet: Changes the value of one or more specific bits of a number stored in 
the table. The word setbits is followed by four number arguments. The first argu-
ment is the address being referred to; the second argument is the starting bit loca-
tion in the number stored at that address (the bit locations are numbered 0 to 31, 
from the least significant bit to the most significant bit); the third argument speci-
fies how many bits to the right of the starting bit location should be modified, and 
the fourth argument is the value (stated in decimal or hexadecimal form) to 
which those bits should be set.

For example, the message setbits 47 5 3 6 will look at address 47 in the table, start at 
bit location 5 (the sixth bit from the right), and replace the 3 bits starting at that 
location with the bits 110 (the binary equivalent of the decimal integer 6). Sup-
pose that address 47 of the table stores the number 87. The binary form of 87 is 
1010111, so replacing the 3 bits starting at bit location 5 with 110 would change 
the number to 1110111, which is the binary form of the decimal integer 119. 
The new number stored at address 47 in the table will therefore be 119.

size In left inlet: The word size, followed by a number, sets the size of the table to that 
number.

sum In left inlet: Sends the sum of all the values in the table out the left outlet.

wclose In left inlet: Closes the graphic editing window associated with the table object.

write In left inlet: Opens a standard save file dialog for choosing a name to write data 
values from the table. The file can be saved in Text or Max binary format.
407 



table  Store and graphically edit
an array of numbers
(mouse) The values stored in table can be entered and edited graphically with the mouse. 
When a table object is first created in a patcher window, the table object’s graphic 
editing window is opened, in which values can be entered by drawing with the 
mouse. The editing window provides a palette of graphic editing tools.

When the patcher window is locked, the graphic editing window can be opened 
by double-clicking with the mouse on the table object.

A table can be created in a separate file by opening a new Table window and 
choosing the Save command from the File menu. A table can also be created in a 
separate file by opening a new Text file, and simply beginning the file with the 
word table. The word table should be followed by a list of space-separated num-
bers, specifying values to be stored in the table.

A table which has been saved as a file can be viewed and edited as text by choosing 
Open as Text… from the File menu. Numbers in the form of text can be pasted in 
from other sources such as the editing window of a capture object, or even from 
another program such as a word processor. Text from a capture object can also be 
pasted directly into a table object’s graphic editing window.

Inspector
The behavior of a table object is displayed and can be edited using its Inspector. If 
you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any table object displays the table Inspector in 
the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

Table Size determines the number of values stored in the table. A newly created 
table has 128 values, indexed with numbers from 0 to 127.

Table Range determines the range of values which can be displayed on the y axis of 
the editing window. A newly created table has a range of 128, from 0 to 127.
 408



table Store and graphically edit
an array of numbers
If Save Table with Patcher is checked, the values in   the table are saved as part of the 
patch that contains it. Otherwise, the table has to be saved in a separate file to 
retain its values.

If Don’t Save is checked, Max will not ask if you want to save changes made to the 
table, when the patch containing that table is closed.

If Use Note Name Legend is checked, values are shown on the y axis as MIDI note 
names, rather than numbers.

If Signed Values is checked, table displays negative numbers as well as positive. In 
effect, the range of displayed values specified by Range is doubled when the Signed 
option is checked, since the range goes in both directions from 0.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
any symbol Optional. The argument gives a name to the table. Max looks for a table of the 

same name which has been saved as a separate file. If two or more table objects 
share the same names, they also share the same values, even if Max couldn’t find a 
file with the name.

Output
int All numbers sent out by table are sent out the left outlet.

bang When the contents of a table have been changed by an edit in the graphic editing 
window, bang is sent out the right outlet.

Examples

An array of any size and range can be stored, recalled, and modified
409 



table  Store and graphically edit
an array of numbers
See Also

capture Store numbers to view or edit
coll Store and edit a collection of different messages
funbuff Store x,y pairs of numbers together
Histo Make a histogram of the numbers received
multiSlider Multiple slider and scrolling display
Text Format numbers as a text file
Tutorial 32 The table object
Timeline Creating a graphic score of Max messages
Data Structures Ways of storing data in Max
Quantile Using table for probability distribution
Tables Using the table graphic editing window
 410



tan Tangent function

411 

Input
float or int Input to a tangent function.

bang In left inlet: Calculates the tangent of the number currently stored. If there is no 
argument, tan initially holds 0.

Arguments
float or int Optional. Sets the initial value for the tangent function.

Output
float or int The tangent of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function
tanh Hyperbolic tangent function



 412

tanh  Hyperbolic tangent function

Input
float or int Input to a hyperbolic tangent function.

bang In left inlet: Calculates the hyperbolic tangent of the number currently stored. If 
there is no argument, tanh initially holds 0.

Arguments
float or int Optional. Sets the initial value for the hyperbolic tangent function.

Output
float or int The hyperbolic tangent of the input.

Examples

See Also

acos Arc-cosine function
asin Arc-sine function
atan Arc-tangent function
atan2 Arc-tangent function (two variables)
cos Cosine function
cosh Hyperbolic cosine function
sin Sine function
sinh Hyperbolic sine function



tempo Output numbers at a
metronomic tempo
Input
bang In left inlet: Starts the tempo object’s metronome process, or restarts it if tempo is 

already on.

stop In left inlet: Stops tempo.

int In left inlet: If the number is not 0, it has the same effect as bang. If the number is 0, 
it has the same effect as stop.

int or float In 2nd inlet: The number is stored as the tempo, in beats per minute (quarter 
notes per minute). The tempo is limited between 5 and 300 beats per minute.

In 3rd inlet: The number is a beat multiplier, which can lengthen the amount of 
time taken for one beat. It slows the tempo down by a factor. For example, a mul-
tiplier of 2 will make tempo send out its output half as fast.

In right inlet: The number is the rhythmic value sent out by tempo, specified as a 
fraction of a whole note. For example, the number 8 causes tempo to output 
eighth notes, relative to the specified (quarter note) tempo. The numbers sent out 
the outlet cycle continuously between 0 and the number 1 less than the rhythmic 
value. The divisions of a whole note must be between 1 and 96.

tempo In left inlet: The word tempo, followed by a float, sets the current tempo to the 
number.

clock The word clock, followed by the name of an existing setclock object, sets tempo to 
be controlled by that setclock rather than by Max’s internal millisecond clock. The 
word clock by itself sets tempo back to using Max’s regular millisecond clock.

Arguments
int or float Optional. The first argument sets an initial tempo, from 5 to 300 beats per 

minute. If there is no argument, the initial tempo is 120 beats per minute. The sec-
ond argument is the beat multiplier and is set to 1 by default. The third argument 
sets an initial rhythmic value of the output, from a whole note (1) to a 64th note 
triplet (96). If the argument is not present, the initial value is 16.

Output
int When tempo is started it outputs numbers in a continuous cycle from 0 to the 

number 1 less than the specified rhythmic value. The speed at which the numbers 
are sent out is determined by the tempo (quarter note beats per minute) and the 
rhythmic value of the output (fraction of a whole note).
413 



tempo  Output numbers at a
metronomic tempo
Examples

The tempo (60) defines the speed of a quarter note, division defines the pulse to be sent out

See Also

clocker Report elapsed time, at regular intervals
metro Output a bang message at regular intervals
setclock Control the clock speed of timing objects remotely
timein Report time from external time code source
Tutorial 31 Using timers
 414



Text Format numbers
as a text file
Input
clear Erases the contents of Text.

cr Puts a carriage return at the end of the contents of Text, to start a new line. If the 
last character in Text is a space, the carriage return replaces that space.

line The word line, followed by a number, causes Text to send out the contents of that 
line number (up to 256 characters) with the word set prepended (for setting the 
contents of a message box). Lines are numbered beginning with 1; any line num-
ber message less than 1 is converted to line 1. If a nonexistent line number is 
requested, nothing is sent out.

open Opens the object’s text window for editing. Double-clicking on the Text object in a 
locked patcher has the same effect. The Text object ignores messages to change its 
text while the editing window is open. Unlike the capture object, changes made in 
the editing window of Text actually alter the contents of the object.

read The word read, followed by a symbol that specifies a filename, will read the con-
tents of a text file of up to 32,000 characters into the Text object. If no filename or 
pathname is specified, the read message will call up the standard Open Document 
dialog box, so that a text file can be specified.

settitle The word settitle, followed by any word, sets the title of the text window. If you 
want more than one word to appear as the default text, you must enclose the 
words in single smart quotes (“, obtained by typing option-] and shift-option-]) 
or precede the spaces with a backslash (\).

symbol The word symbol, followed by any word, stores that word at the end of the contents 
of Text. This is useful if you want to store a word that would otherwise be under-
stood as a specific message by Text. For example, symbol clear stores the word clear, 
followed by a space, at the end of the contents of Text, rather than erasing the con-
tents.

tab Puts a tab stop at the end of the contents of Text. If the last character in Text is a 
space, the tab stop replaces that space.

wclose Closes the window associated with the Text object.

write The word write, followed by a symbol that specifies a filename, will save the con-
tents of Text as a text file in the current default directory unless the file is specified 
with a full pathname. If no filename or pathname is specified, the write message 
will open up a standard Save As dialog box, so that the contents of Text can be 
saved in a separate text file.

anything else The message is stored in the Text object, placed after any previously stored mes-
sages, and is followed by a space. 
415 



Text  Format numbers
as a text file
(mouse) Double-clicking with the mouse on the Text object (when the patcher window is 
locked) opens an editing window in which the contents of Text can be viewed and 
edited. The Text object ignores messages to change its text while the editing win-
dow is open. Unlike the capture object, changes made in the editing window of 
Text actually alter the contents of the object.

Arguments
symbol Names a text file to be read in when the object is loaded.

Output
set When a line message is received, the text of the specified line number is sent out 

preceded by the word set. The message can be used to set the contents of a message 
box (or can be sent to any other object for which that particular set message is 
appropriate).

Examples

Collect messages as text, to paste elsewhere or to save as a separate file

See Also

capture Store numbers to view or edit
filein Read in a file of binary data
spell Convert input to ASCII codes
sprintf Format a message of words and numbers
table Store and graphically edit an array of numbers
textedit Object for user-entered text in a patcher
 416



textedit User-entered text
in a patcher
Input
(typing) When the textedit object is highlighted, typing enters text into the text display 

area and modifies its buffer, unless the object is set to read-only mode (see the rea-
donly message). The ASCII value of the character typed is sent out the middle out-
let.

(mouse) Clicking with the mouse on the textedit object (when the patcher window is 
locked) will causes the textedit object to send either the letter or word selected out 
its right outlet depending on the setting of the click mode (see the clickmode mes-
sage).

bang Outputs the typed or stored contents of the textedit object’s buffer.

append The word append, followed by a message, will append the message to the textedit 
object’s buffer without causing any output.

autoscroll The word autoscroll, followed by a 0 or 1, toggles autoscrolling in the text display 
area. The message autoscroll 1 lets you scroll past the amount of text displayed in the 
textedit window when the number of lines is set to 1 and the word wrapping is 
disabled (see the wordwrap message) using either the cursor or by clicking and 
dragging in the textedit window. The default is 0 (autoscroll disabled).

clear Erases the contents of the textedit object’s buffer.

clickmode The word clickmode, followed by a 0 or 1, sets the way that the textedit object 
responds to mouse clicks in the text display area. The message clickmode 0 will send 
an individual character clicked on out the right outlet of the textedit object. Set-
ting the object with the message clickmode 1 will send the word the user clicks on. 
The default is 0 (select characters).

keymode The word keymode, followed by a 0 or 1, sets the way that the textedit object 
responds to carriage returns while typing characters into its text display area. The 
message clickmode 0 allows for text input, and displays carriage returns normally. 
Setting the object with the message keymode 1 causes the carriage return to output 
the entire contents of the current buffer. The default is 0.

lines The word lines, followed by a number, sets the maximum number of lines of text 
that textedit will display. lines 0 removes any limit on the number of text lines. 
You'd want to use lines 1 on a textedit object that is being used to enter a number or 
word in a “dialog box” context. The default is that there is no line limit.

outputmode The word outputmode, followed by a 0 or 1, sets whether the textedit object outputs 
its contents as a message or as a single symbol. The message outputmode 0 causes 
the output of the object to be sent out as messages. Setting the object with the 
message outputmode 1 will output the buffer contents as a single symbol. The 
default is 0 (output as messages).
417



textedit User-entered text
in a patcher
readonly The word readonly, followed by a 0 or 1, toggles the read only mode of the textedit 
object. The message readonly 1 disables any user entry into the text box. Messages 
which operate on the current contents of the textedit buffer such as clear, append, or 
separator are not affected by the readonly message. The default is 0 (readonly mode 
off).

set The word set, followed by any message, sets the contents of the textedit object’s 
buffer while causing no output.

select Causes the text (if any) to be highlighted, and if the object is not in read-only 
mode, sets the object to be the target of keyboard events.

separator The word separator, followed by any symbol, sets that symbol as a line separator. 
and treats it as a carriage return when the contents of the buffer are output. If the 
buffer contains the text “red green blue” and the object receives the message separa-
tor green, the next bang received by textedit will output red (carriage return) blue.

wordwrap The word wordwrap, followed by a 0 or 1, sets the way that the textedit object dis-
plays messages which are longer than the textedit display area. The message word-
wrap 0 (default) will enable text wrapping on word boundaries in the display area. 
The message clickmode 1 disables word-wrap.

(Font menu) The size and font used in the textedit object can be altered by choosing a different 
font or size from the Font menu.

Inspector
The behavior of a textedit object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any textedit object displays the textedit 
Inspector in the floating window. Selecting an object and choosing Get Info… 
from the Object menu or also displays the Inspector.

Typing numbers into the Maximum Lines number box sets the maximum lines 
displayed in the text area. The default is 0. Options contains three checkboxes 
which set the behavior and output of the textedit object. By default, none of these 
options are selected. Checking Read-only sets the object to display text only. 
Checking the Return Enters Text checkbox causes the carriage return to output the 
entire contents of the current buffer on a carriage return. If Output as One Symbol 
is checked, the textedit object will output its contents as a single symbol rather 
than as a message. Text wrapping on word boundaries can be enabled by check-
ing the Word Wraparound option, and the Automatic Scrolling option (default on) 
allows the scrolling of selected text. The output behavior of the textedit object is 
also set using the When Clicked.... checkboxes. You can choose to output charac-
ters (the default) or words when you click on the text.
418



textedit User-entered text
in a patcher
 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
symbol Out left outlet: The currently stored contents of the textedit object’s buffer are out-

put when the object receives a bang message. If the textedit message has been set to 
enter text on a carriage return using the keymode 1 message, a carriage return will 
also output the typed text and the buffer contents.

symbol Out middle outlet: The ASCII value of the typed key.

symbol Out right outlet: The word or letter in the textedit object’s text box that the user 
has clicked on.

Examples

Collect text to store in a coll object
419



textedit User-entered text
in a patcher
See Also

dialog Open a dialog box for text entry
Text Format messages as a text file
420



thispatcher Send messages
to a patcher
The thispatcher object is placed inside the patcher you want to control. It sends messages to the 
patcher that contains it.

Input
loadbang Sending the loadbang message to thispatcher causes any loadbang objects in the 

same patcher to send out a bang. Any other objects which use a loadbang message 
internally for initialization (such as the preset object) will receive this message, 
too.

front Brings the patcher window to the front, or opens the window and brings it to the 
front if it’s loaded as a subpatch but is not visible.

wclose Closes the patcher window. If the patcher has been edited, you will be asked if you 
want to save the changes.

clean Resets the patcher window’s “dirty” flag, so the user won’t be asked to save changes 
when the window is closed.

dirty Sets the patcher window's “dirty” flag, so the user will be asked to save changes 
when the window is closed.

dispose Permanently closes the patcher window and frees its memory. You can use this in 
conjunction with the load message to the pcontrol object to open and close patch-
ers automatically. If the patcher has been edited, you will be asked if you want to 
save the changes.

offset For patchers contained inside boxes (using the bpatcher object), the offset message 
sets the upper left corner of the visible portion of the patcher in the box. The word 
offset should be followed by two numbers; the first number specifies the left offset 
(in pixels) and the second specifies the top offset. By default, patchers in bpatcher 
boxes are displayed with an offset of 0,0. When you hold down the command and 
shift keys and drag in a bpatcher object’s box, the offset changes as you move, and 
the current offset is displayed in the Assistance area of the window that contains 
the bpatcher. You can use these numbers to help you determine appropriate argu-
ments to the offset message.

path If the patcher window is saved as a file, the word path sends the full pathname of 
folder containing the patcher's file out the thispatcher object's right outlet.

write Saves the patcher’s file if it has a name; otherwise, brings up a Save As dialog.

(others) thispatcher will respond to messages to create new objects. The format of these 
messages is cryptic and subject to change, but you can get some idea of what 
might be worth trying by examining a patcher file as text, and trying any of the 
messages that begin with #P. Leave the #P out of the message you send to this-
patcher. Use of thispatcher to create new objects is not supported.
421 



thispatcher  Send messages
to a patcher
patcher The word patcher, followed by any text, replaces the window name shown in the 
title bar. The new window name is shown enclosed in brackets, to indicate that it 
is not the actual file name, which is left unaltered.

window window notitle hides the title bar of the patcher window. window title shows the title 
bar. window flags noclose hides the close box that normally appears in the title bar of 
the patcher window. window flags close shows the close box. window flags nozoom hides 
the zoom box that normally appears in the right corner of the title bar. window flags 
zoom shows the zoom box. window flags nogrow hides the scroll bars and the grow 
box that normally appears in the lower right portion of the window. window flags 
grow shows the scroll bars and the grow box. window size, followed by four num-
bers, sets the precise screen coordinates (in pixels from the top left corner of the 
screen) of the left, top, right, and bottom limits of the window, respectively. The 
left and top coordinates refer to the upper left corner of the content portion of the 
window, not the title bar.

window fullscreen 1 hides the menu bar and resizes the patcher window to fill the 
entire screen, with no title bar and no scroll bars. window fullscreen 0 shows the 
menu bar and restores the previous size and appearance of the patcher window.

The above window messages do not take effect until you send the message window 
exec.

The messages window getsize, window getflags, and window gettitle, cause thispatcher to 
send a window message out the left outlet reporting the current characteristics of 
the window.

savewindow The word savewindow, followed by a non-zero number, means that any unusual 
window settings caused by window flags messages to thispatcher will be saved as 
part of the patch the next time the patch is saved. The message savewindow 0 means 
that changes to the window caused by window flags messages to thispatcher will not 
be retained when the patch is saved; the prior patcher window settings are saved. 
If no savewindow message has been received, the patcher will be saved with a nor-
mal window appearance.

Scripting Messages

The script message to thispatcher permits dynamic control over object creation, deletion, sizing and 
positioning, and patching. The word script is followed by a keyword that indicates a function. Fol-
lowing the keyword are arguments that specify what objects are to be affected by the message. 

In the discussion of each script message that follows, the syntax indicates required arguments for 
the message after the keyword in angle brackets. An example of each message is also provided.

A variable-name is a symbol that names either a new or existing object. You can set variable names 
by choosing Name... from the Object menu, or with certain scripting messages such as new and 
select.
 422



thispatcher Send messages
to a patcher
Instantiating and Deleting Objects

new Creates a new object in a patcher window and gives it a name.

Syntax:script new <variable-name> <creation message>

Example:script new footog toggle 101 93 15 0

Creates a new toggle object 15 pixels square at 101 93 and assign it to the variable 
footog.

Since the save formats of Max objects are not documented, in order to determine 
the appropriate creation message for the desired object, you'll have to examine 
Max patchers as text. Most objects are saved with one of the following basic styles:

#P classname arguments; (internal UI object)

#P newex classname arguments; (normal internal or external object)

#P user classname arguments; (external UI object)

Remove the #P and the semicolon and put the rest of the message after the variable 
name that will be assigned to the new object.

delete Deletes an object in a patcher window.

Syntax:script delete <variable-name>

Example:script delete footog

Deletes the object associated with the variable name footog.

Assigning Variable Names to Objects

class Assigns a variable name to the first instance of a specified class with matching 
arguments

Syntax:script class <variable-name> <class-name> <arguments (optional)>

Example:script class rubadub + 4

Assigns the name rubadub to the first instance found of + with argument 4 in the 
patcher.

nth Assigns a variable name to the nth instance of a specified class

Syntax: script nth <variable-name> <class-name> <index>

Example:script nth yoyo toggle 1
423 



thispatcher  Send messages
to a patcher
Assigns the name yoyo to the first toggle found in the patcher.

 The order of objects in a patcher is determined by the front-to-back ordering. 
Objects in back of the patcher that draw behind other objects are first in the 
search order.

selected Assigns a variable name to the first object found that is selected

Syntax:script selected <variable-name>

Example:script selected impo

Assigns the name impo to the first object found that is selected. Obviously this 
script message only works when the patcher is unlocked, since no object can be 
selected in a locked patcher.

Connecting and Disconnecting Objects

For all three connection messages described below, inlets and outlets are specified by index, with 0 
denoting the leftmost inlet or outlet. The first variable specified is the object whose outlet you are 
connecting or disconnecting and the second variable is the one whose inlet you are connecting. 
Messages can then flow from outlet to inlet.

connect Connects two objects together with a patch cord

Syntax:script connect <outlet-variable-name> <outlet-index> <inlet-variable-name> 
<inlet-index>

Example:script connect fooboo 0 bobo 0

Connects the left outlet of the object with the variable name fooboo to the left inlet 
of the object with the variable name bobo.

disconnect Disconnect two objects connected by a patch cord

Syntax:script disconnect <outlet-variable-name> <outlet-index> <inlet-variable-name> 
<inlet-index>

Example:script disconnect fooboo 0 bobo 0

This message undoes the connection between the left outlet of fooboo and the left 
inlet of bobo.

connectcolor Modify the color of an existing patch cord, setting it to one of Max's 16 standard 
colors.

Syntax:script connectcolor <outlet-variable-name> <outlet-index> <inlet-variable-name> 
<inlet-index> <color>
 424



thispatcher Send messages
to a patcher
Example:script connectcolor rover 0 dover 2 12

Changes the color of the connection between the left outlet of the rover object with 
the 3rd inlet of the dover object to the color stored at index 12.

Changing Object Properties

hide Hide a visible object.

Syntax:script hide <variable-name>

Example:script hide visigoth

Hides the object named visigoth

show Show a hidden object.

Syntax:script hide <variable-name>

Example:script hide visigoth

Makes the object named visigoth visible.

ignoreclick Set an object not to respond to mouse clicks.

Syntax:script ignoreclick <variable-name>

Example:script ignoreclick visigoth

Makes the object named visigoth ignore mouse clicks.

respondtoclick Set an object to respond to mouse clicks.

Syntax:script respondtoclick <variable-name>

Example:script respondtoclick visigoth

Makes the object named visigoth respond to mouse clicks.

bringtofront Bring an object to the front of the layer it's currently in.

Syntax:script bringtofront <variable-name>

Example:script bringtofront visigoth

If visigoth is in the foreground layer, this message moves it to the front of the fore-
ground layer. Otherwise it moves it to the front of the background layer.

sendtoback Move an object to the back of the layer it's currently in.
425 



thispatcher  Send messages
to a patcher
Syntax:script sendtoback <variable-name>

Example:script sendtoback visigoth

If visigoth is in the foreground layer, this message moves it to the back of the fore-
ground layer. Otherwise it moves it to the back of the background layer. Note that 
objects that are “in the back” are the first objects to be found by the variable 
assignment messages nth and class.

size Change an object's size. There are some objects that have restrictions on their size, 
but they generally do not protect themselves against sizes they don't expect, so use 
this message with some caution. For instance the toggle object expects to be a 
square. It may not draw properly if it's made into a rectangle.

Syntax:script size <variable-name> <width> <height>

Example:script size togipoo 30 30

Changes the object named togipoo to be 30 by 30 pixels.

Sending Messages to Objects

send Send a message to an object. This message is the same as using a message box with 
a semicolon or a send object, but you use the object variable name feature of 
scripting to specify the object that will receive the message—using script send to 
communicate with a named receive object does not work. The message can only 
be sent to an object within the patcher as the thispatcher object receiving the script 
send message.

Syntax:script send <variable-name> <message>

Example:script send foobert 666

The object with the variable name foobert receives an int 666 message. If foobert were 
a number box, its displayed value would change to 666.

sendbox Send a message to an object box. This message is identical to send except that it 
sends the message to an object's box rather than the object referred to by the box. 
There is currently only one object, bpatcher, in which the object and box are dif-
ferent objects. The box is a bpatcher, and the object is a patcher. What can you tell 
a bpatcher to do? One example is the boxborder message, which is equivalent to 
sending the border message to a thispatcher object in a patcher inside a bpatcher. 
Peek inside the Inspector patch for bpatcher for other ideas.

Syntax:script sendbox <variable-name> <message>

Example:script sendbox bpbp boxborder 0
 426



thispatcher Send messages
to a patcher
If bpbp names a bpatcher object, this script message would tell it not to draw its bor-
der.

Moving Objects

move Move an object to an absolute position relative to the current top-left corner of a 
patcher window. Note that the 0,0 point is underneath the icon bar.

Syntax:script move <variable-name> <top> <left>

Example:script move molly 0 100

Moves the object named molly to the left edge of the window, 100 pixels down 
from the top.

offset Move an object a distance from its current position. Positive distances move the 
object down and to the right, negative distances move it up and to the left.

Syntax:script offset <variable-name> <delta-x> <delta-y>

Example:script offset molly 30 -40

Moves the object named molly 30 pixels to the right and 40 pixels up.

offsetfrom Move an object a set distance from another object.

Syntax:script offsetfrom <variable-name-to-move> <target-variable-name> <delta-x> 
<delta-y> <top-left-flag>

The top-left-flag is 1 if the distance is relative to the top-left corner of the object, 
and 0 if it is relative to the bottom-right corner.

Example:script offsetfrom molly panther -100 -120 1

Moves the object named molly 100 pixels to the left of the left side of the object 
named panther, and 120 pixels above the top of the object named panther.

Arguments
None.

Output
window Out left outlet: When the message window getsize is received, thispatcher sends out 

the words window size followed by the screen coordinates (in pixels from the top 
left corner of the screen) of the left, top, right, and bottom limits of the window. 
When the message window gettitle is received, the message window title or window 
notitle is sent out, depending on whether the window has a title bar. When the 
427 



thispatcher  Send messages
to a patcher
message window getflags is received, thispatcher sends out the words window flags fol-
lowed by the visibility of the scroll bars and grow box (grow or nogrow), the close 
box (close or noclose), and the zoom box (zoom or nozoom). 

symbol Out right outlet: The full pathname of the folder or volume containing the 
patcher's file in response to the path message. If the patcher has not been saved, 
there is no output.

Examples

Automatic window control, file saving, or patcher reset are possible with thispatcher

Windows can have any size, location, and appearance, set within the patch itself

See Also

bpatcher Embed a visible subpatch inside a box
pack Combine numbers and symbols into a list
patcher Create a subpatch within a patch
pcontrol Open and close subwindows within a patcher
sprintf Format a message of words and numbers
Tutorial 46 Basic Scripting
Tutorial 47 Advanced Scripting
 428



thisTimeline Send messages
to a timeline

429 

Input
any message If thisTimeline is in an action patch, and the action is currently being used in a 

timeline, then any message that would normally be acceptable to a timeline object 
can be received by thisTimeline, and will be transmitted to the timeline that con-
tains the action.

bang Sends out the current time of the timeline that contains the thisTimeline object in 
an action.

Arguments
None.

Output
(to timeline) The messages received in the inlet are conveyed to the timeline that contains the 

action in which the thisTimeline object is located.

int When bang is received in the inlet, thisTimeline sends out its outlet the current 
time, in milliseconds, of the timeline that contains it in an action.

Examples

A timeline can actually control itself via a thisTimeline object in an action

See Also

thisTrack Send messages to a timeline track
tiCmd Receive messages from a timeline
timeline Time-based score of Max messages
Tutorial 41 Timeline of Max messages
Timeline Creating a graphic score of Max messages



 430

thisTrack  Send messages
to a timeline track

Input
any message If thisTrack is in an action patch, and the action is currently being used in a time-

line, then a message received by thisTrack will be transmitted to the timeline track 
that is calling the action.

mute The word mute, followed by a nonzero number, mutes the timeline track of the 
action that contains thisTrack. The message mute 0 unmutes the track.

name The word name, followed by any other symbol, sets the name of the action’s time-
line track (in the graphic timeline editor window) to that symbol.

height The word height, followed by a number greater than 0, sets the height, in pixels, of 
the timeline track’s visual display in the graphic timeline editor window. 

Arguments
None.

Output
(to timeline) The messages received in the inlet are applied to the timeline track that is using 

the action containing the thisTrack object.

Examples

A timeline action can mute its own track with a thisTrack object

See Also

thisTimeline Send messages to a timeline
tiCmd Receive messages from a timeline
timeline Time-based score of Max messages
Timeline Creating a graphic score of Max messages
Tutorial 41 Timeline of Max messages



thresh Combine numbers into a list,
when received close together
Input
int or float  a time In left inlet: Numbers are combined into a list if received within a certain 

time of each other. When the time between incoming numbers is greater than the 
specified threshold, the list is sent out the outlet, and a new list is started.

In right inlet: The number is stored as the time, in milliseconds, to wait before 
sending out the compiled list of numbers. If no new number is received in the left 
inlet within that time, the list is sent out and a new list is started.

list In left inlet: The entire list is appended to the list stored in thresh.

Arguments
int Optional. Sets an initial value for the threshold time. If no argument is present, 

the initial value is 10 milliseconds.

float Converted to int. 

Output
list Each number received in the left inlet is appended to a list stored by thresh. If a 

certain time passes without a new number being received, thresh sends out the list 
and starts a new list.

Examples

If threshold time is exceeded without a new number being received, thresh sends out what it holds
431 



thresh  Combine numbers into a list,
when received close together
See Also

bondo Synchronize a group of messages 
buddy Synchronize arriving data, output them together 
iter Break a list up into a series of numbers
pack Combine numbers and symbols into a list
zl Multi-purpose list processor
Tutorial 37 Data structures
 432



tiCmd Receive messages
from a timeline object
Input
The tiCmd object is intended to be placed in an action patch, which is loaded as a 
track in a timeline. tiCmd gets its input from an event editor of the same name in 
the timeline track. The type(s) of message(s) it can receive depends on the typed-
in argument(s) i, f, l, b, s, or a.

int If the second (and last) typed-in argument is i, then tiCmd receives an int value 
from a timeline event editor, and passes the number out its middle outlet. There 
are three types of event editor that can be placed in a track of a timeline for send-
ing int values: int, etable, and efunc.

The int event editor in a timeline looks like, and functions much like, a number 
box object in a patcher. When the timeline is being played and reaches the int 
event editor, it sends the value in the number box to the appropriate tiCmd object, 
to be passed out tiCmd’s middle outlet.

The etable event editor is similar to the table object. It is an array of ints which can 
be edited graphically. When the timeline is being played and it reaches an etable 
event editor, it sends out all the numbers in the etable one-by-one at a rate pro-
portional to the space that the etable occupies on the timeline. For example if an 
etable containing 128 values occupies the space from time 1000 to time 9000 (in 
milliseconds) on a timeline track, then tiCmd will receive ints at the rate of 16 per 
second as the timeline progresses through those eight seconds.

The efunc event editor is a two-dimensional array containing pairs of x,y values 
which can be edited graphically. When the timeline is being played and it reaches 
an efunc event editor, it sends the y values in the efunc to tiCmd at a time deter-
mined by the x value (relative to the maximum range of x values), proportional to 
the space that the etable occupies on the timeline. For example, if the maximum 
range of x values in an efunc is 1000, and the efunc covers a time period from 1000 
to 9000 (in milliseconds), then the x,y pair 500, 127 would cause the number 127 

(the y value) to be sent to tiCmd at time 5000 (500/1000 of the way from 1000 to 

9000).

float If the second (and last) typed-in argument is f, then tiCmd receives a float value 
from a timeline event editor, and passes the number out its middle outlet. The 
float event editor looks and functions like a float number box in a patcher window.

list If the second argument is l, or if there are more than two arguments, then tiCmd 
receives a list from a messenger event editor in the timeline. A messenger looks just 
like a message box object except that the name of the event (the name of the tiCmd 
object it will send to) is printed at the beginning of the box. (The name will not be 
sent out as part of the message, however. It’s just there to remind you where the 
message will be sent.)
433 



tiCmd  Receive messages
from a timeline object
bang If the second (and last) argument is b, then tiCmd receives a bang message from a 
messenger in the timeline, regardless of what message is typed into the messenger.

symbol If the second (and last) argument is s, then tiCmd receives a symbol from a messen-
ger in the timeline. If more than one word is typed into the messenger, only the 
first word gets sent to tiCmd. To include more than one word in a messenger, and 
have them all sent out as a single symbol to tiCmd, precede the space character(s) 
with a backslash (\).

any message If the second (and last) argument is a, then tiCmd can receive any message from a 
messenger in the timeline, and will send it out the middle outlet unchanged.

Arguments
symbol Obligatory. The first argument is the name of the tiCmd object, which will appear 

as a possible event in a timeline track that uses the action containing the tiCmd. 
More than one tiCmd in an action may have the same name, and each one will 
receive the same message from the timeline event, although the order in which 
they will receive the message is undefined. tiCmd objects in the same action with 
the same name can even have different type arguments (can expect different types 
of message), but the event editor that appears in the timeline will depend on the 
type argument of the tiCmd object that is loaded first (which cannot always be reli-
ably predicted).

i, f, s, l, b, or a Optional. After the first argument, each additional argument creates a new outlet 
(in addition to the left and right outlets, which always exist) and specifies the type 
of message to be sent out of that outlet: i for int, f for float, l for list, b for bang, s for 
symbol, and a for any message. If there is no type argument present, no middle 
outlet will be created; the event can still be placed in the timeline track, however, 
as a messenger, and tiCmd will still send a bang message out its left and right outlets.

If the only type argument is f, the event editor in the timeline track will be a float 
number box. If the only type argument is i, the event editor in the timeline track 
can be a number box, an etable, or an efunc. (See input message int, above.) If the 
type argument is anything else, or if there is more than one type argument, the 
event editor in the timeline track will be a messenger. (See input message list, 
above.)

Output
bang Out left outlet: When an event with the same name as the tiCmd is reached in a 

timeline, a bang is sent out tiCmd object’s left outlet.

Out middle outlet(s): If the outlet has been specified as a b outlet, bang is sent out 
when the event is reached in the timeline (immediately after the left outlet sends 
its bang). The word bang sent out of an s outlet has the same effect.
 434



tiCmd Receive messages
from a timeline object
Out right outlet: When the timeline reaches the end of a messenger event with the 
same name as the tiCmd, a bang is sent out tiCmd object’s right outlet.

int Out middle outlet(s): If the outlet has been specified as an i outlet, an int is sent 
out when the event is reached in the timeline (immediately after the left outlet 
sends its bang). A symbol that is actually an integer number (sent out of an s out-
let) has the same effect.

float Out middle outlet(s): If the outlet has been specified as an f outlet, a float is sent 
out when the event is reached in the timeline (immediately after the left outlet 
sends its bang). A symbol that is actually a decimal number (sent out of an s outlet) 
has the same effect.

list Out middle outlet(s): If the outlet has been specified as an l outlet, a list is sent out 
when the messenger event is reached in the timeline (immediately after the left 
outlet sends its bang).

If there are more than two arguments (two or more in addition to the name argu-
ment) then a list received from the timeline will be broken up and each item in the 
list will be sent out a different middle outlet, in order from left to right.

symbol Out middle outlet(s): If the outlet has been specified as an s outlet, a symbol is 
sent out when the messenger event is reached in the timeline (immediately after 
the left outlet sends its bang). However, if the symbol to be sent out the outlet is a 
number or is bang, then it is sent out as an int, a float, or a bang.

any message Out middle outlet: If the outlet has been specified as an a outlet, the message is 
sent out when the messenger event is reached in the timeline (immediately after 
the left outlet sends its bang).

Examples

A timeline communicates with an action patch via the tiCmd object
435 



tiCmd  Receive messages
from a timeline object
See Also

thisTimeline Send messages to a timeline
timeline Time-based score of Max messages
Tutorial 41 Timeline of Max messages
Timeline Creating a graphic score of Max messages
 436



timein Report time from
external time code source
The timein object requires OMS (and OMS Timing) in order to operate. If OMS is not installed, it 
does nothing.

Input
int In left inlet: Any number other than 0 starts timein. At regular intervals, timein 

sends out the current time, as obtained from OMS Timing. In order for OMS 
Timing to progress, it must be started by an application that supports it. (This 
could include Max itself, with a start message to the timeout object.) 0 stops timein.

In middle inlet: The number specifies a time code format in which to report the 
current time. Time codes are numbered as follows:

0 milliseconds
1 beats
2 24 frames/sec bits
3 25 frames/sec bits
4 30 frames/sec Drop bits
5 30 frames/sec bits
6 24 frames/sec
7 25 frames/sec
8 30 frames/sec Drop
9 30 frames/sec
10 29.97 frames/sec Drop bits
11 29.97 frames/sec Drop
12 29.97 frames/sec bits
13 29.97 frames/sec

In right inlet: The number is the time interval, in milliseconds, at which timein 
reports the current time. Any number less than 5 is set to 5. A new number in the 
right inlet does not take effect until the next output is sent.

float Converted to int.

bang In left inlet: Sends out a report of the current time obtained from OMS Timing.

format In left inlet: The word format, followed by a number, sets the time code format of 
OMS Timing and sends out the current time. Time code formats are numbered as 
shown above.

beats In left inlet: Causes timein to report the time in beats format. In this format, time 
is actually reported as fractions of a beat, known as “ticks”—normally with a 
granularity of 480 ticks per quarter note at the current tempo of OMS Timing.

smpte In left inlet: Causes timein to report the time in a SMPTE format, at the current 
frame rate being used by OMS Timing. The SMPTE format will be in bits (80ths 
of a frame) by default, unless a qf message has been received beforehand.

qf In left inlet: Indicates that time should be displayed in quarter-frame (non-bits) 
format when a subsequent smpte message is received.
437 



timein  Report time from
external time code source
bits In left inlet: Indicates that time should be displayed in bits format (80ths of a 
frame) when a subsequent smpte message is received.

Arguments
int Optional. The first argument specifies a time code format in which timein will 

display the time. If the argument is not present, it is set to milliseconds format.

int Optional. The second argument sets an initial value for the time interval at which 
timein sends its output. If the argument is not present, the initial time interval is 
100 milliseconds. Any value less than 1 will be set to 100.

Output
int Out left outlet: The current time is sent out at regular intervals (specified by the 

number in the rightmost inlet). Depending on the time code format (specified by 
the number in the middle inlet), the time will be reported in milliseconds, ticks 
(fractions of a quarter note), or 80ths of a frame for SMPTE bits formats. For 
non-bits SMPTE formats, time is reported in hours, minutes, seconds, and 
frames, so the left outlet reports hours.

Out 2nd outlet: When timein is reporting the time in a non-bits SMPTE format, 
the minutes are sent out this outlet.

Out 3rd outlet: When timein is reporting the time in a non-bits SMPTE format, 
the seconds are sent out this outlet.

Out right outlet: When timein is reporting the time in a non-bits SMPTE format, 
the number of frames is sent out this outlet.

Examples

OMS Timing provides a single clock for synchronizing Max with other applications
 438



timein Report time from
external time code source
See Also

clocker Report elapsed time, at regular intervals
tempo Output numbers at a metronomic tempo
timeout Write current time to OMS
MIDI MIDI overview and specification
Ports How MIDI ports are specified
439 



timeline  Time-based score
of Max messages
Input
clock The word clock, followed by the name of an existing setclock object, sets the       

timeline to be controlled by that setclock rather than by Max’s internal millisecond 
clock. The word clock by itself sets the timeline object back to using Max’s regular 
millisecond clock.

locate The word locate, followed by a number, specifies a time on the timeline—in milli-
seconds—and moves the timeline object’s current time pointer to that time. If the 
timeline is already playing when a locate message is received, it will continue play-
ing after relocating its current time pointer.

markers The word markers, followed by an outlet number, causes the first word of each 
marker event in the timeline to be sent out the specified outlet, as the argument to 
an append message to be sent to a umenu object. (If the specified outlet does not 
exist, an error message is printed in the Max window and nothing is sent out of 
the timeline object.) Because the markers message is intended for storing the begin-
ning of each marker in a umenu object, it first causes the message clear to be sent 
out the outlet to clear the umenu object’s previous contents. Immediately after 
that, a series of append messages is sent out, to add the first word of each marker to 
the umenu. (The text output of the umenu object can then be attached to a prepend 
search object, which is in turn umenu back to the inlet of the timeline object, to 
locate the current time pointer at a marker location. See the example.)

mute The word mute, followed by the number of a timeline track, mutes that track, pre-
venting its events from being sent to the action patch.

open Causes the window associated with the timeline object to become visible. The 
window is also brought to the front. Double-clicking on the timeline object in a 
locked patcher has the same effect.

play Plays the timeline contained in the timeline object.

read The word read, followed by the name of a timeline file, loads that file into the time-
line object. The word read by itself calls up a standard Open Document dialog 
box, so that a timeline file can be read in.

search The word search, followed by a symbol, searches in the timeline for a marker event 
in which the first word is an exact match of that symbol. If an exact match is 
found, the current time pointer of the timeline moves to the location of the 
matching marker.

stop Stops the timeline.

timeFormat The word timeFormat, followed by an integer from 0 to 4, sets the way in which time 
is displayed in the graphic timeline editor window. The number 0 means millisec-
onds, 1 means MIDI Clock, 2 means 24 fps (frames per second), 3 means 25 fps, 
and 4 means 30 fps. Any other number will be limited to within the 0 to 4 range.
 440



timeline Time-based score
of Max messages
unmute The word unmute, followed by the number of a timeline track, unmutes the track, 
allowing its events once again to be sent to the action patch.

wclose Closes the window associated with the timeline object.

write Calls up the standard Save As dialog box, so that the contents of timeline can be 
saved in a separate file.

zoomLevel The word zoomLevel, followed by an integer from 0 to 10, will set the magnification 
of the view of the timeline displayed in the graphic editor window. 0 means maxi-
mum zoom out (1 inch = 40 seconds) and 10 means maximum zoom in (1 inch = 
.04 seconds). The default zoom level of the timeline window is 4 (1 inch = 4 sec-
onds). Any number that exceeds the 0 to 10 range will be limited to stay within 
the range.

When a timeline object is created, it opens a timeline editor window, a time-based 
graphical score of Max messages. Other patches can be loaded into this timeline 
as individual tracks (analogous to tracks of a multi-track sequencer, or staves of a 
musical score), and messages can be placed in the tracks to be sent to those 
patches at specific times. A patch that is loaded into a timeline track should gener-
ally contain at least one tiCmd object, to receive messages from the timeline. Such a 
patch is known as an action. The messages in the timeline tracks are known as 
events, and are entered by placing special event editor objects in the tracks.

When the timeline is played, the events in the tracks are sent to specific tiCmd 
objects in the action patch, and the event’s message goes out the tiCmd object’s 
outlet.
441 



timeline  Time-based score
of Max messages
Arguments
symbol Optional. The first argument specifies the name of a timeline file to read into the 

timeline object. If no file of that name is found, the name will still appear in the 
title bar of the empty timeline editing window that is opened when the timeline 
object is created.

int The second argument (or the only argument, if no name argument is present) sets 
the number of outlets the timeline object will have. Any number less than 1 will be 
set to 0.

Output
any message If the timeline has a positive integer argument, it will have that number of outlets. 

If any of its action patches (or the patch that contains the timeline object itself) 
contains a tiOut object, then any message received in the inlet of the tiOut is sent 
out the specified outlet of the timeline object. If the timeline object has no outlets, 
an error message will be printed in the Max window when the tiOut object is 
loaded, because no message can be sent out of the timeline object.

(to actions) When timeline receives a play message, it progresses along the timeline of events 
placed in its graphic editing window. When it encounters an event on the time-
line, it sends that event to a specific tiCmd object (in another patch, which has 
been loaded into the timeline as an action), which in turn passes the message out 
its own outlet.

Examples

Control a timeline’s speed with setclock                         Use markers to go to specific spots on the timeline
 442



timeline Time-based score
of Max messages
See Also

mtr Multi-track sequencer
setclock Control the clock speed of timing objects remotely
thisTimeline Send messages to a timeline
thisTrack Send messages to a timeline track
tiCmd Receive messages from a timeline
tiOut Send messages out of a timeline object
Tutorial 41 Timeline of Max messages
Timeline Creating a graphic score of Max messages
443 



timeout  Write current time to OMS
The timeout object requires OMS (and OMS Timing) in order to operate. If OMS is not installed, 
it does nothing.

Input
start In left inlet: Starts the OMS Timing clock.

stop In left inlet: Stops the OMS Timing clock.

int In left inlet: Sets the current time of OMS Timing. Depending on the time code 
format specified by the typed-in argument, the time is specified in milliseconds, 
ticks (fractions of a quarter note), or 80ths of a frame for SMPTE bits formats. 
When timeout is in non-bits SMPTE time format, the leftmost inlet sets the hours 
of the current time.

In 2nd inlet: Sets the minutes of the current time when timeout is in non-bits 
SMPTE format.

In 3rd inlet: Sets the seconds of the current time when timeout is in non-bits 
SMPTE format.

In right inlet: Sets the frame count of the current time when timeout is in non-bits 
SMPTE format.

format In left inlet: The word format, followed by a number, sets the time code format of 
OMS Timing and of timeout. Time code formats are numbered 0-13 as follows:

0 milliseconds

1 beats

2 24 frames/sec bits

3 25 frames/sec bits

4 30 frames/sec Drop bits

5 30 frames/sec bits

6 24 frames/sec

7 25 frames/sec

8 30 frames/sec Drop

9 30 frames/sec

10 29.97 frames/sec Drop bits

11 29.97 frames/sec Drop

12 29.97 frames/sec bits

13 29.97 frames/sec

tempo In left inlet: The word tempo, followed by a number (either a float or an int), sets the 
beat tempo—in beats per minute—of OMS Timing. When timeout is using the 
beats time format, numbers in the left inlet refer to fractional parts of a beat 
(ticks) at the specified tempo.

granularity In left inlet: The word granularity, followed by a number, sets the number of ticks 
per quarter note that timeout will use when providing the time to OMS Timing. 
 444



timeout Write current time to OMS
Acceptable granularity values are 12, 24, 48, 96, 120, 160, 192, 240, 320, 384, 480, 640, 
960, and 1920. Other values will cause an error message and will have no effect.

Arguments
int Optional. Initializes the time code format to be used when sending the time. 

Time formats are specified by numbers 0-13 as shown above. If no argument is 
present, the default time format is milliseconds.

Output
timeout has no outlets. It controls the clock of OMS Timing with the time 
received. OMS Timing's clock can be used to synchronize Max with other appli-
cations (which may need to be put into “external clock” mode).

Examples

timeout can be used to provide a master tempo, or to leap to any point in time

See Also

timein Report time from external time code source
MIDI MIDI overview and specification
Ports How MIDI ports are specified
445 



 446

timer  Report elapsed time
between two events

Input
bang In left inlet: Starts—or restarts—the timer.

In right inlet: Sends out the time elapsed since the timer was started.

clock In left inlet: The word clock, followed by the name of an existing setclock object, 
causes the timer object’s clock to be controlled by that setclock rather than by 
Max’s internal millisecond clock. The word clock by itself sets timer back to using 
Max’s regular millisecond clock.

Arguments
None. 

Output
 float When a bang is received in the right inlet, the time elapsed—in milliseconds—

since the timer was started, is sent out the outlet.

Examples

See Also

clocker Report elapsed time, at regular intervals
delay Delay a bang before passing it on
setclock Control the clock speed of timing objects remotely
Tutorial 20 Using the computer keyboard

Report time between bang messages A single event can report time, then restart timer



tiOut Send messages out
of a timeline object

447 

Input
any message The tiOut object is designed to be used in an action patch. Any message received 

by tiOut in an action patch is sent out an outlet of the timeline object that is using 
that action.

Arguments
Optional. Specifies the outlet of the timeline object, out of which to send mes-
sages. If no argument is present, the tiOut object’s messages are sent out outlet 1 of 
the timeline (the left outlet).

Output
(to timeline) Any message received in the inlet is sent out the specified outlet of the timeline 

object that contains the tiOut in one of its actions. If the timeline object has no out-
lets, an error message will be printed in the Max window when the tiOut object is 
loaded, and no message will be sent from tiOut to the timeline object.

Examples

Messages going into tiOut come out the specified outlet of the timeline that contains it

See Also

tiCmd Receive messages from a timeline
timeline Time-based score of Max messages
Timeline Creating a graphic score of Max messages
Tutorial 41 Timeline of Max messages



 448

TogEdge  Report zero/
non-zero transitions

Input
int The number is stored in TogEdge. If it is not 0, and the previously stored number 

was 0, TogEdge sends a bang out the left outlet. If the number is 0, and the previ-
ously stored number was not 0, TogEdge sends a bang out the right outlet. Other-
wise, TogEdge sends no output.

float Ignored by TogEdge.

bang Switches the value stored in TogEdge from 0 to non-zero, or vice versa, and reports 
the change by sending a bang out one of the outlets.

Arguments
None. 

Output
bang Out left outlet: If the stored value is changed from 0 to not 0.

Out right outlet: If the stored value is changed from not 0 to 0.

Examples

Used as a detector of on/off status, or to switch back and forth between two triggers

See Also

change Filter out repetitions of a number
led Display on/off status in color
toggle Switch between on and off (1 and 0)



toggle Switch between
on and off (1 and 0)

449 - toggle Objects

Input
int The number is sent out the outlet. If the number is not 0, toggle displays an X, 

showing it is on. If it is 0, toggle is blank, showing it is off.

float Converted to int.

bang Switches toggle on if it is off; switches it off if it is on.

A mouse click on toggle has the same effect as a bang in its inlet.

set Switches the toggle on or off without sending anything out the outlet. The word 
set, followed by any non-zero number, sets toggle to on; set 0 sets it to off.

(mouse) Clicking on a toggle is the same as sending it a bang message.

Arguments
None. 

Output
int A number received in the inlet is sent out the outlet. A bang or a mouse click sends 

1 or 0 out the outlet, depending on whether toggle is being turned on or off.

Examples

Used as an onscreen controller, or to display the on/off status of numbers passing through

See Also

led Display on/off status in color
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
radiogroup Radio button/check box user interface object
TogEdge Report zero/non-zero transitions
Tutorial 5 toggle and comment



 450

tosymbol  Convert messages, numbers, or lists
to a single symbol

Input
any message The tosymbol object accepts any message, number, or list for an input, and sends a 

single symbol out its output. The symbol can have a maximum length of 2048 
characters.

separator The word separator specifies the separator character to be used when concatenat-
ing. The message separator with no arguments removes all spaces when creating a 
symbol (e.g., 1 2 3 4 becomes 1234). The message separator : can be used to con-
struct pathnames (e.g., mylaptop Max myjunk becomes mylaptop:Max:myjunk). The 
default separator is a space.

Arguments
None.

Output
symbol A single symbol consisting of the concatenated messages, numbers, or lists.

Examples

Convert any input into a symbol

See Also

fromsymbol Transform a symbol into individual numbers or messages
zl Multi-purpose list processor



touchin Receive MIDI
aftertouch values
Input
(MIDI) touchin receives its input from MIDI aftertouch (channel pressure) messages 

received from a MIDI input device.

enable The message enable 0 disables the object, causing it to ignore subsequent incoming 
MIDI data. The word enable followed by any non-zero number enables the object 
once again, even if the entire patcher window has had its MIDI disabled by the 
MIDI Enable/Disable button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming pitch bend messages. The word port 
is optional and may be omitted.

int The number is treated as if it were an incoming MIDI aftertouch value. If there is a 
right outlet, 0 is sent out in lieu of a MIDI channel number. The received number 
is sent out the left outlet, and is not limited in the range 0 to 127.

(mouse) Double-clicking on a touchin object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port from which to receive incoming aftertouch messages. 

If there is no argument, touchin receives on all channels from all ports.

(MIDI name) Optional. The name of a MIDI input device may be used as the first argument to 
specify the port.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to receive aftertouch messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
int If a specific channel number is included in the argument, there is only one outlet. 

The output is the incoming aftertouch value, from 0-127, on the specified chan-
nel and port.

If there is no channel number specified by the argument, touchin will have a sec-
ond outlet, on the right, which will output the channel number of the incoming 
aftertouch message.
451 



touchin  Receive MIDI
aftertouch values
Examples

Aftertouch messages can be received from everywhere, a specific port, or a specific port and channel

See Also

touchout Transmit MIDI aftertouch messages
midiin Output received raw MIDI data
OMS Using Max with OMS
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs
 452



touchout Transmit MIDI
aftertouch messages
Input
int In left inlet: The number is transmitted as an aftertouch value on the specified 

channel and port. Numbers are limited between 0 and 127.

In right inlet: The number is stored as the channel number on which to transmit 
the aftertouch messages.

float Converted to int.

list In left inlet: The first number is the aftertouch value, and the second number is 
the channel, of a MIDI aftertouch message, transmitted on the specified channel 
and port.

enable The message enable 0 disables the object, causing it not to transmit MIDI data. The 
word enable followed by any non-zero number enables the object once again, even 
if the entire patcher window has had its MIDI disabled by the MIDI Enable/Dis-
able button or by a pcontrol object.

port The word port, followed by a letter a-z or the name of a MIDI input device, sets the 
port from which the object receives incoming pitch bend messages. The word port 
is optional and may be omitted.

(mouse) Double-clicking on a touchout object brings up a dialog box for choosing its OMS 
device from a list.

Arguments
a-z Optional. Specifies the port for transmitting MIDI aftertouch messages. Channel 

numbers greater than 16 received in the right inlet will be wrapped around to stay 
within the 1-16 range. If there is no argument, touchout initially transmits out 
port a, on MIDI channel 1.

a-z and int A letter and number combination (separated by a space) indicates a port and a 
specific MIDI channel on which to transmit aftertouch messages. Channel num-
bers greater than 16 will be wrapped around to stay within the 1-16 range.

(MIDI name) Optional. The name of a MIDI output device may be used as the first argument to 
specify the port.

int A number alone can be used in place of a letter and number combination. The 
exact meaning of the channel number argument depends on the channel offset 
specified for each port in the MIDI Setup dialog.

Output
(MIDI) There are no outlets. The output is a MIDI aftertouch message transmitted 

directly to the object’s MIDI output port.
453 



touchout  Transmit MIDI
aftertouch messages
Examples

See Also

touchin Output received MIDI aftertouch values
midiout Transmit raw MIDI data
Ports How MIDI ports are specified
Tutorial 16 More MIDI ins and outs

Letter argument transmits to only one port Otherwise, number specifies both port and channel
 454



trigger / t Send input to
many places, in order
Input
int or float The number is sent out each outlet in the form designated by the typed-in argu-

ments: either an int, a float, a list, a symbol (although empty), or a bang.

bang Causes either a bang, an integer 0, a float 0., a list 0, or an empty symbol to be sent 
out of each outlet.

list The list is sent out any outlet with the letter l assigned to it. Out other outlets, the 
list is converted and sent out as integer 0, float 0., the empty symbol “”, or bang.

symbol The word will be sent out any outlet with the letter s assigned to it. Out other out-
lets, the symbol is converted and sent out as integer 0, float 0., list 0, or bang.

Arguments
i, f, b, l, or s Optional. The number of arguments determines the number of outlets. Each out-

let sends out either int, float, bang, list, or symbol, depending on the arguments. If 
there are no arguments, there are two outlets, both of which send an int.

any message Optional. When an int, float, or symbol is specified, the value is output as a con-
stant.

Output
int or float A number received in the inlet is sent out each outlet, in order from right to left. 

The number will be converted to int, float, list, symbol, or bang before being sent 
out, depending on the argument that corresponds to each outlet. A symbol, list, 
or bang received in the inlet will be converted to integer 0 by an i outlet, and to float 
0. by an f argument.

bang Anything received in the inlet will be converted to bang before being sent out a b 
outlet.

list A list received in the inlet will be sent out unchanged by an l outlet. Anything else 
will be converted to the single-item list 0 before being sent out.

symbol A symbol received in the inlet will be sent out unchanged by an s outlet. Anything 
else will be converted to the null symbol “” before being sent out. Note: The only 
object that recognizes this null symbol is print, which valiantly prints the empty 
message in the Max window. Other objects will either ignore this null symbol or 
print an error message in the Max window.
455 



trigger / t  Send input to
many places, in order
Examples

See Also

bangbang Send a bang to many places, in order
message Send any message
Tutorial 7 Right-to-left order

Order is normally right-to-left Any other order can be specified by trigger
 456



Trough If a number is less than
previous numbers, output it
Input
int In left inlet: If the input is less than the value currently stored in Trough, it is stored 

as the new minimum value and is sent out.

In right inlet: The number is stored in Trough as the new minimum value, and is 
sent out.

float In left inlet: Is not understood by Trough.

In right inlet: Converted to int.

list In left inlet: The second number is stored as the new minimum value and is sent 
out, then the first number is received in the left inlet.

bang In left inlet: Sends the currently stored minimum value out the left outlet.

Arguments
None. The initial value stored in Trough is 128. 

Output
int Out left outlet: New minimum values are sent out. (Numbers received in the right 

inlet are always the new minimum value.)

Out middle outlet: If the number received is a new minimum value, the output is 
1. If the number received in the left inlet is not a new minimum value, the output is 
0.

Out right outlet: If the number received is a new minimum value, the output is 0. 
If the number received in the left inlet is not a new minimum value, the output is 1.

Examples

Find the smallest in a series of numbers                 Number in right inlet always sets a new trough
457 



Trough  If a number is less than
previous numbers, output it
See Also

minimum Output the smallest in a list of numbers
Peak If a number is greater than previous numbers, output it
< Is less than, comparison of two numbers
 458



ubutton Transparent button,
sends a bang
Input
bang The ubutton object can operate in one of two modes. When the ubutton is in but-

ton mode (the default mode), it responds to a bang in its inlet by becoming high-
lighted briefly and sending a bang out its left outlet. When ubutton is in toggle 
mode, a bang in its inlet causes it to become (and stay) highlighted and send a bang 
out its right outlet; or, if it is already highlighted, it becomes unhighlighted and 
sends a bang out its left outlet.

any symbol Converted to bang.

(mouse) In button mode, a mouse click on ubutton highlights it for as long as the mouse is 
held down, sending a bang out the right outlet when the mouse button is pressed 
down, and another bang out the left outlet when the mouse button is released. In 
toggle mode, a mouse click behaves the same as a bang. When the mouse is clicked, 
ubutton will send a 1 out the right outlet if the cursor is inside of the ubutton 
object's rectangle, and 0 if it is not. It will also send these messages when the 
mouse button is released. When the object is in “Track Mouse While Dragging” 
mode, these messages are sent continuously while the mouse button is held down 
after a click. 

stay The word stay, followed by a nonzero number, puts ubutton into button mode and 
sets it to wait for that particular number. When that number is received in the 
inlet, no output is sent, but ubutton stays highlighted until some other message (or 
a mouse click) is received. A message of stay 0 puts the ubutton into normal button 
mode; it no longer looks for any particular number.

int If ubutton is waiting for a particular number (its Stay-on Value) and the incoming 
number matches it, the button is highlighted but nothing is sent out. If the incom-
ing number does not match the number that ubutton is waiting for, the button is 
unhighlighted (or remains that way). If ubutton has a Stay-on Value of 0, int is the 
same as bang.

float Converted to int.

dragtrack The word dragtrack, followed by a nonzero number, enables “Track Mouse While 
Dragging” mode. In this mode, positional and inside/outside messages 
(described above for mouse clicks) are sent continuously while the mouse button 
is held down after a click. dragtrack 0 disables this behavior, which is off by default. 
Dragging the mouse will continue to generate these message pairs until the 
mouse button is released. Drag tracking is off by default. It can also be enabled in 
the ubutton object’s Inspector.

set If ubutton is in toggle mode, set 1 sets the ubutton object’s toggle (highlights it) and 
set 0 clears the ubutton object’s toggle (unhighlights it). Other integer arguments 
for set will send the number to ubutton, for comparison to its Stay-on Value, with-
out causing any output.
459



ubutton Transparent button,
sends a bang
toggle The word toggle, followed by a non-zero number, puts the ubutton in toggle mode. 
The message toggle 0 puts the ubutton in button mode.

Inspector
The behavior of a ubutton object is displayed and can be edited using its Inspec-
tor. If you have enabled the floating inspector by choosing Show Floating 
Inspector from the Windows menu, selecting any ubutton object displays the 
ubutton Inspector in the floating window. Selecting an object and choosing Get 
Info… from the Object menu or also displays the Inspector.

The ubutton Inspector lets you specify the Button Mode (the default) or Toggle 
Mode. The Highlight When Clicked check box sets the mouse behavior of the ubut-
ton object. The Track Mouse While Dragging” checkbox enables cursor position 
reporting (see the dragtrack message). Typing a nonzero number into the Stay-on 
Value box specifies the number the ubutton will wait for in Button Mode. To 
choose Toggle Mode, you must set the Stay-on Value to 0.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
None.

Output
bang Out 1st outlet: In button mode (with a Stay-on Value of 0), any input causes ubut-

ton to flash and send a bang out the left outlet. A bang is also sent out the left outlet 
when the mouse button is released.

If the ubutton object is in toggle mode and is already highlighted, any input causes 
ubutton to become unhighlighted and send a bang out its left outlet.

bang Out 2nd outlet: In button mode (with a Stay-on Value of 0), a mouse click sends a 
bang when the mouse button is pressed.

If the object is in toggle mode, any input causes ubutton to become highlighted 
and send a bang out the outlet. If it is already highlighted, it becomes unhigh-
lighted and no bang is sent.

list Out 3rd outlet: When the mouse button is clicked and released, the ubutton object 
sends out a list composed of two numbers which specify the coordinates for the 
cursor position expressed as an offset, in pixels, from the upper left-hand corner 
of the ubutton object rectangle. If the “Track Mouse While Dragging” option is 
460



ubutton Transparent button,
sends a bang
enabled using the Inspector or the dragtrack message, new coordinates will be 
reported as the mouse is moved until the mouse button is released.

int Out right outlet: When the mouse button is clicked and released, a 1 is sent out 
this outlet if the cursor is inside of the ubutton object’s rectangular area. If the 
“Track Mouse While Dragging” option is enabled using the Inspector or the 
dragtrack message, a 0 will be output if the cursor moves outside of the ubutton 
object’s rectangular area while the mouse button is pressed.

Examples

 When ubutton is placed on comments or pictures, they can “respond” to a mouse click

See Also

bangbang Send a bang to many places, in order
button Flash on any message, send a bang
fpic Display a picture from a graphics file
led Display on/off status in color
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
radiogroup Radio button/check box user interface object
Tutorial 19 Screen aesthetics
461



umenu Pop-up menu, to display
and send commands
Input
int The number specifies a menu item to be sent out, and causes umenu to display 

that item. The items are numbered starting at 0.

A menu item can also be chosen from a umenu with the mouse, as with any pop-
up menu.

append The word append, followed by any message, appends that message as the new last 
item in the menu.

autosize The word autosize, followed by a 1 or 0, turns sizing the pop-up menu to the width 
of the longest item on or off. If autosize is off, the width of the menu is the width of 
the object's rectangle.

bang Sends out the currently displayed menu item.

brgb The word brgb, followed by three numbers between 0 and 255, sets the color of the 
umenu object in RGB format. The default is 221 221 221.

checkitem The word checkitem, followed by an item number and 1 or 0, places (1) or removes 
(0) a check mark next to the item number.

clearchecks The word clearchecks removes check marks for all items.

clear Removes all items from the umenu.

color The word color, followed by a number between 0 and 15, sets the foreground (text) 
color to the standard preset color specified by the number.

delete Followed by a number of an item, deletes that item from the umenu.

evalitemtext The word evalitemtext, followed by a 1 or 0, turns Evaluate Item Text mode on or 
off. When on, the message represented by the current item's text is sent out the 
right outlet when the menu's value is changed either by message or the user click-
ing on it.

frgb The word rgb, followed by three numbers between 0 and 255, sets the text color of 
the umenu object in RGB format. The default is 0 0 0.

labelclick The word labelclick, followed by a 1 or 0, turns Label Click mode on or off. In this 
mode, when the object is in Label mode, you can click in the object's rectangle 
and the current value of the menu is sent out the left outlet. In addition, the text of 
the current item is shown underlined.

maxitems The word maxitems, followed by the number, sets the maximum number of menu 
items of the umenu, in the same way as the Maximum number of items setting in 
462



umenu Pop-up menu, to display
and send commands
the umenu object’s Inspector (see Inspector, below). The default is 64, and the 
maximum is 2000.

mode The word mode, followed by the number 1, 2, or 3, sets the appearance and behav-
ior of the umenu, in the same way as the Mode setting in the umenu object’s 
Inspector (see Inspector, below). mode 1 is the normal pop-up menu style, mode 2 is 
a scrolling menu style, and mode 3 is a label instead of a menu.

rgb2 The word rgb2, followed by three numbers between 0 and 255, sets the upper 
frame light color (i.e., the “lit” part of a 3D menu item) of the umenu object’s 
menu item in RGB format. The default is 255 255 255.

rgb3 The word rgb3, followed by three numbers between 0 and 255, sets the upper 
frame dark color (i.e., the “shaded” part of a 3D menu item) of the umenu object’s 
menu item in RGB format. The default is 221 221 221.

rgb4 The word rgb4, followed by three numbers between 0 and 255, sets the lower frame 
light color (i.e., the “lit” part of a 3D menu item) of the rectangle that outlines the 
umenu object’s menu item in RGB format. The default is 170 170 170.

rgb5 The word rgb5, followed by three numbers between 0 and 255, sets the lower frame 
dark color (i.e., the “shaded” part of a 3D menu item) of the umenu object’s menu 
item in RGB format. The default is 119 119 119.

rgb6 The word rgb6, followed by three numbers between 0 and 255, sets the color of the 
“corner dots” of the umenu display area in RGB format. If you are using a umenu 
object on a colored background or in front of a panel, you should set this color to 
match the background object color. The default is 187 187 187.

set The word set, followed by a number or symbol, specifies a menu item to be dis-
played by umenu, but does not send it out the outlet. If the set argument is a sym-
bol, set searches for a menu item which begins with the symbol.

setcheck The word setcheck, followed by a number between 0 and 255, sets the character 
used to be the check mark. setcheck 0 uses the default character.

setitem The word setitem, followed by an item number and any message, sets the specified 
menu item to that message.

setrgb The word setrgb, followed by six numbers between 0 and 255 that specify RGB val-
ues, uses the first three numbers to set the foreground (text) color and the second 
three numbers to set the background (fill) color.

showchecked This message operates as follows. If the currently displayed item is checked, do 
nothing. Otherwise, starting at the first item in the menu, find one that is checked 
and set the menu to display that item. If there isn't one, do nothing.
463



umenu Pop-up menu, to display
and send commands
symbol Identical to the set message with a symbol argument, except that the found item 
number is sent out (and the text of the item is sent out the right outlet, if the Eval-
uate Item Text feature is enabled).

Inspector
The behavior of a umenu object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any umenu object displays the umenu Inspec-
tor in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.

Enter the items which you want to appear on the menu in the Menu Text box, sep-
arated by commas. The the Maximum Items box lets you specify the maximum 
number of menu items. You nay have any number of menu items from 32 to 2000 
(the default is 64). The pop-up Mode menu lets you specify the appearance and 
behavior of the umenu object’s user interface. Normal (the default) is the standard 
pop-up menu, allowing you to see all the menu items at once by clicking and 
holding the mouse button. Scrolling mode lets you scroll through the individual 
menu items by dragging the mouse up or down, displaying one item at a time; 
“Label” shows the text of the selected menu item with no border around it, and 
does not respond to the mouse. If Auto Size is checked, the width of the umenu 
object’s pop-up menu will be adjusted to fit the width of the longest item. If Evalu-
ate Item Text is checked, the text of the menu item will be sent as a message out the 
right outlet when the item is selected.

The Color option lets you use a swatch color picker or RGB values used to display 
the umenu text and its background. Text sets the color for the message displayed 
(default 0 0 0), and Background sets the color for the message area in which the 
hint appears (default 221 221 221). The Upper Frame Light, Upper Frame Dark, 
Lower Frame light, and Lower Frame Dark attributes are used to set the “lit” and 
“shaded” edges of the menu item. The default settings are 255 255 255 for upper 
frame light, 221 221 221 for upper frame dark, 170 170 170 for lower frame light, 
and 119 119 119 for lower frame dark. Corner Dots is used to set the color of the 
corner area of the umenu item’s display area. The default is 187 187 187.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

The font and size of a umenu can be changed with the Font menu.

Arguments
None.
464



umenu Pop-up menu, to display
and send commands
Output
int Out left outlet: The number of the selected menu item is sent out. Menu items are 

numbered beginning with 0.

anything Out right outlet: If Evaluate Item Text has been checked in the Inspector, the text 
of the selected menu item is sent out as a message.

Examples

See Also

coll Store and edit a collection of different messages
Tutorial 37 Data structures

 Used to send commands …or to display text associated
with numbers received
465



 466

universal  Send a message to all instances
of the same class in a patcher

Input
class symbol The universal objects expects as input a symbol that names an object class (for 

example, table or dspstate~), followed by a message selector and any number of 
arguments for that message. The message and its arguments (if any) are sent to all 
instances of the class within the same patcher (and possibly its subpatchers). 

sendmessage To send messages to certain objects whose class names are also reserved Max 
message names (such as int and float), you need to start the message with the send-
message message. sendmessage can be used with any class. 

Arguments
int Optional. If a 1 is present as an argument, universal will send messages it receives 

to objects of the specified class in subpatchers of its patcher as well as in the 
patcher containing the universal object. 

Output
None. The object has no outlets, but objects receiving the message(s) it sends may 
have some form of output from their outlets. However, the order in which the 
message is sent to various objects is not guaranteed. This is also true when using 
the send and receive objects. 

Examples

Send a message to all objects of the same class at once

See Also

forward Send remote messages to a variety of objects
receive Receive messages without patch cords
send Send messages without patch cords
value Share a stored message with other objects



unpack Break a list up into
individual messages
Input
list Each item in the list (up to the number of outlets) is sent out the outlet corre-

sponding to its position in the list.

int The number is sent out the left outlet.

float Converted to int, unless the left outlet was initialized with a float argument. The 
number is sent out the left outlet.

symbol The symbol is sent out the left outlet. If the left outlet was not initialized with a 
symbol argument, 0 is sent out the outlet.

bang Causes each stored item of a list received in the inlet to sent out the corresponding 
outlet.

Arguments
anything Optional. The number of outlets is determined by the number of arguments. The 

arguments can be any combination of ints, floats, and symbols. Outlets that cor-
respond to int or float arguments will always output that type of number, convert-
ing the input items as necessary. Outlets initialized with a symbol argument will 
pass the input items out unchanged. If no argument is typed in, unpack will have 
two int outlets.

Output
int Each item of the list received in the inlet is sent out the corresponding outlet. The 

first item in the list is sent out the leftmost outlet, and so on. If an outlet has been 
initialized with an int argument, then a float or a symbol will be converted to int 
before being sent out that outlet. (A symbol is converted to 0.)

float If the outlet has been initialized with a float argument, then an int or a symbol 
from the input list will be converted to float before being sent out that outlet. (A 
symbol is converted to 0.0.)

symbol A symbol in the input list will be sent out the corresponding outlet if that outlet 
has been initialized with a symbol argument. If the outlet has been initialized with 
an int or a float, the symbol will be converted to 0 or 0.0.
467 



unpack  Break a list up into
individual messages
Examples

Each item in a list can be sent to a different place

See Also

iter Break a list up into a series of numbers
pack Combine numbers into a list
spray Distribute an integer to a numbered outlet
zl Multi-purpose list processor
Tutorial 30 Number groups
 468



urn Generate random numbers
without duplicates
Input
bang In left inlet: Sends out a previously unchosen random number from 0 to one less 

than the specified maximum limit.

clear In left inlet: Clears the list of already chosen numbers.

int In right inlet: Clears the list of already chosen numbers, and specifies the number 
of possible values for the random number generator. The random numbers will 
range from 0 to one less than this maximum limit.

seed In left inlet: The word seed, followed by a number, provides a “seed” value for the 
random generator, which causes a specific (reproducible) sequence of pseudo-
random numbers to occur. The number 0 uses the time elapsed since system star-
tup (an unpredictable value) as the seed, ensuring an unpredictable sequence of 
numbers. This unpredictable seed is used by default when the urn object is cre-
ated.

Arguments
int Optional. The number of possible values for the random number generator. If no 

argument is typed in, there will be only 1 possible number.

Output
int Out left outlet: If there are numbers within the current range that have not been 

sent out since the last clear message was received, urn generates a random number 
between 0 and one less than the maximum.

bang Out right outlet: When all numbers in the current range have been generated, urn 
sends a bang out the right outlet instead of a number out the left outlet.

Examples

Choose random numbers without repeating a choice 
469 



urn  Generate random numbers
without duplicates
See Also

decide Choose randomly between on and off (1 and 0)
drunk Output random numbers in a moving range
random Generate a random number
 470



uslider Output numbers by
moving a slider onscreen
Input
int The number received in the inlet is displayed graphically by uslider, and is passed 

out the outlet. Optionally, uslider can multiply the number by some amount and 
add an offset to it, before sending it out the outlet.

(mouse) The uslider will also send out numbers in response to mouse clicking or dragging. 

float Converted to int.

bang Sends out the number currently stored in uslider.

color The word color, followed by a number from 0 to 15, sets the color of the center por-
tion of the uslider to one of the object colors which are also available via the Color 
command in the Object menu.

local The word local, followed by a non-zero number, enables object response to mouse 
clicks (the default). The message local 0 disables the object’s response to the 
mouse; the uslider object will respond only to input in its inlet and ignore all 
mouse clicks.

min The word min, followed by a number, sets value that will be added to the uslider 
object’s value before it is sent out the outlet. The default is 0.

mult The word mult followed by a number, specifies a multiplier value. The uslider 
object’s value will be multiplied by this number before it is sent out the outlet. The 
multiplication happens before the addition of the Offset value. The default value 
is 1.

resolution The word resolution, followed by a number, sets the sampling interval in millisec-
onds. This controls the rate at which the display is updated as well as the rate that 
numbers are sent out the uslider object’s outlet.

set The word set, followed by a number, resets the value displayed by uslider, without 
triggering output.

size The word size, followed by a number, sets the range of the uslider object. The 
default value is 128. Setting the size to 1 disables the uslider visually (since it can 
only display one value). Any specified size less than 1 will be set to 2.

Inspector
The behavior of a uslider object is displayed and can be edited using its Inspector. 
If you have enabled the floating inspector by choosing Show Floating Inspector 
from the Windows menu, selecting any uslider object displays the uslider Inspec-
tor in the floating window. Selecting an object and choosing Get Info… from the 
Object menu or also displays the Inspector.
471



uslider Output numbers by
moving a slider onscreen
The uslider Inspector lets you enter a Slider Range value. Numbers received in the 
inlet are automatically limited between 0 and the number 1 less than the specified 
range value. The default range value is 128. You can specify an Offset value which 
will be added to the number, after multiplication. The default offset value is 0. The 
uslider Inspector also lets you specify a Multiplier. The uslider object’s value will be 
multiplied by this number before it is sent out the outlet. The multiplication hap-
pens before the addition of the Offset value. The default multiplier value is 1.

 The Revert button undoes all changes you’ve made to an object’s settings since you 
opened the Inspector. You can also revert to the state of an object before you 
opened the Inspector window by choosing Undo Inspector Changes from the 
Edit menu while the Inspector is open.

Arguments
The range of uslider is set by selecting it (when the patcher window is unlocked) 
and choosing Get Info… from the Object menu. Numbers received in the inlet 
are automatically limited between 0 and the number 1 less than the specified 
range.

The Inspector also provides a Multiplier—by which all numbers will be multi-
plied before being sent out, and an Offset—which will be added to the number, 
after multiplication. A newly created uslider has a range of 128, a multiplier of 1, 
and an offset of 0.

Output
int Numbers received in the inlet, or produced by clicking or dragging on uslider with 

the mouse, are first multiplied by the multiplier, then have the offset added to 
them, then are sent out the outlet. 
472



uslider Output numbers by
moving a slider onscreen
Examples

See Also

dial Output numbers by moving a dial onscreen
hslider Output numbers by moving a slider onscreen
kslider Output numbers from a keyboard onscreen
pictctrl Picture-based control
pictslider Picture-based slider
rslider Display or change a range of numbers
slider Output numbers by moving a slider onscreen
Tutorial 14 Sliders and dials
Tutorial 14 Sliders and dials

Produce output by
dragging onscreen...

or use to display
numbers passing through
473



Uzi  Send a specific
number of bang messages
Input
bang In left inlet: Begins sending out bang messages as fast as possible, one after 

another. The number of bang messages to send is determined by the last number 
received in either inlet.

int In left inlet: Sets the number of bang messages to send, then begins sending them 
out as fast as possible, one after another.

In right inlet: Sets the number of bang messages to send, without causing output.

pause In left inlet: Causes Uzi to stop in the midst of sending its output. (Since Uzi sends 
its output as fast as possible, this message must be triggered in some way by the 
output of Uzi itself.) Uzi keeps track of how many bang messages it has sent, and if it 
receives the pause message before sending out all its bang messages, it can then be 
caused to send out the rest of its bang messages with a resume or continue message.

break Same as pause.

resume In left inlet: If Uzi has been stopped by a pause message in the midst of sending its 
output, resume causes it to send out the rest of its output.

continue Same as resume.

Arguments
int Optional. Sets an initial number of bang messages to be sent out in response to a 

bang in the left inlet. If no argument is present, Uzi is initially set to send out one 
bang.

Output
bang Out left outlet: When Uzi receives a bang or int in its left inlet, a certain number of 

bang messages are sent out as fast as possible, one after another. The number of 
bang messages is determined by the most recent number received in either inlet.

Out middle outlet: After the last bang is sent out its left outlet, Uzi sends one bang 
out its middle outlet. This can be used as a signal that all the bang messages have 
been sent, much like the “carry” outlet on the counter object.

int Out right outlet: The number of each bang is sent out. Numbering begins from 1 
each time an int or bang is received in the left inlet. If Uzi is being restarted with a 
resume or continue message, numbering begins wherever it left off.
 474



Uzi Send a specific
number of bang messages
Examples

See Also

counter Count the bang messages received, output the count
line Output numbers in a ramp from one value to another
metro Output a bang message at regular intervals

Count as fast as
possible using Uzi

Count at a specific
rate using Uzi

Use Uzi to perform many
calculations quickly
475 



 476

value / v  Share a stored number
with other objects

Input
any message The message is stored, to be shared by all other value objects with the same name, 

even if they are in another patch. A message received in any other value object that 
has the same name will change the stored value.

bang Sends out the stored message.

(mouse) Double-clicking on a value object opens all windows containing value objects 
with the same name.

Arguments
symbol Obligatory. Gives a name to value.

any message Optional. Additional arguments after the naming symbol initialize the contents of 
value. If no additional arguments are present, value contains nothing.

Output
any message A bang in the inlet causes the stored message to be sent out.

Examples

One value (or any type of message) is shared between all value objects that share the same name

See Also

float Store a decimal number
int Store an integer value
pv Share variables specific to a patch and its subpatches
send Send messages without patch cords
receive Receive messages without patch cords
Tutorial 24 send and receive



vdp Control a videodisk player
through a serial port
The vdp object works with serially-controlled videodisk players (remember them?) that are com-
patible with the Pioneer 4200 or 8000 standard. Each command received by the vdp object sends a 
stream of numbers out the object’s left outlet, intended to be connected to the serial object. The 
description of each command below discusses what effect the command has on the player, not the 
exact character stream sent by vdp.

Because videodisc players have relatively buffer-less serial interfaces, vdp places each command it 
receives in a queue, and sends it out only when the player has finished executing its most recent 
command. This “feature” may cause a delay between the time a command is sent to the vdp object 
and the time it is actually sent out the serial port.

Any message received in the right inlet will behave exactly as if it had been received in the left inlet, 
except that it will be put at the front of the queue, to be the very next command sent out to the 
player.

Input
clear In left inlet: Removes any pending commands from the queue and resets the 

object.

control In left inlet: The word control, followed by a number, tells the videodisc player to 
perform one of the following operations:

NumberOperation
0 Initialize and reset player
1 Eject disk
2 Audio off
3 Audio 1 on
4 Audio 2 on
5 Stereo on
6 Picture on
7 Picture off
8 Display frame numbers on
9 Display frame numbers off
11 Frame access mode
12 Time access mode
13 Chapter access mode
477 



vdp  Control a videodisk player
through a serial port
fps In left inlet: Sets the playing speed. The fps message is followed by a number 
(frames per second) or an adjective. The following adjectives and numbers are 
equivalent (at least for the Pioneer 4200):

slowest 1
slower 10
slow 15
normal 30
fast 60
faster 90
fastest 120

frame In left inlet: Asks the player what its current frame number is and sends the 
response (received in the middle inlet) out the middle-right outlet.

play In left inlet: With no arguments, play starts playing at the current speed from the 
current location to the end of the disk (or until the player receives another com-
mand). With one argument (a frame number), play searches to the specified 
frame number and begins playing to the end of the disk. With two arguments, play 
searches to the location specified by the first number and plays until the disc 
reaches the second frame number.

int In left inlet: Same as play from a specified frame number to the end of the disc.

In middle inlet: vdp expects responses from the player to be fed from the serial 
object into its middle inlet. When vdp sees “received” (the letter R followed by the 
return character) from the player, it sends the next command from its queue of 
pending commands. The example shows how to connect the vdp and serial 
objects together.

scan In left inlet: Initiates a “fast forward” or “rewind” operation. scan forward moves for-
ward, scan backward moves backward.

search In left inlet: The first argument indicates a frame number to search to. The sec-
ond, optional argument, if non-zero, instructs the player to keep the picture on 
while searching. If searching a great distance from the current location, the player 
may not be able to keep from blanking the screen. Once the player arrives at the 
desired frame, it will display the (still) image from that frame.

step In left inlet: Followed by -1, step pauses the player (if playing) and displays the pre-
vious frame. Followed by 1, step pauses the player (if playing) and displays the 
next frame.

stop In left inlet: Pauses the player.

cmd In left inlet: The cmd message can be used to send “primitive” commands consist-
ing of ASCII codes to the video disk player. Commands usually consist of two-let-
 478



vdp Control a videodisk player
through a serial port
ter codes preceded by numeric arguments. For example, searching to frame 5000 
could be accomplished with the message cmd 5000 SE. Refer to the owner’s man-
ual of your player for details. The cmd message is particularly useful with the Pio-
neer 8000 player, since it has a number of special features not supported by the 
regular messages of the vdp object.

setskip In left inlet: Followed by a number, sets the number of frames to jump (forward or 
backward) from the current frame location when using the skip message.

skip In left inlet: Followed by -1, skips backward by a number of frames specified in the 
setskip message. Followed by 1, skips forward by a number of frames specified in 
the setskip message.

Arguments
None.

Output
int Out left outlet: A stream of characters, coded instructions to the videodisc player, 

for each command. These numbers are intended to be sent to the left inlet of a 
serial object.

bang Out middle-left outlet: After sending a command out its left outlet, vdp begins 
“polling” the serial object for a response from the player by sending bang messages 
out this outlet approximately every 20 milliseconds, until vdp receives a “received” 
signal from the player in its right inlet. (A bang sent to a serial object causes any 
characters received in that serial port to be sent out the serial object’s outlet.)

int Out middle-right outlet: Current frame number, received from the player in 
response to a frame message.

int Out right outlet: Not implemented.
479 



vdp  Control a videodisk player
through a serial port
Examples

Basic configuration of vdp and serial objects                “Scrubbing” with a slider or MIDI controller

See Also

appledvd Control Apple DVD Player application
serial Send and receive characters from serial ports and cards

Pioneer 4200 operation manual
HyperCard Interactive Video Toolkit documentation
 480



vexpr Evaluate a math expression
for a list of different inputs
The vexpr object behaves exactly like the expr object, except for the way in which it handles lists. 
See expr for a full description.

Input
list vexpr is designed to receive a list in each inlet. The items of each list are used indi-

vidually, in order from left to right, to replace the changeable argument in a series 
of evaluations of the expression. When a list is received in the left inlet, the expres-
sion is first evaluated using the first item of each list, then using the second item of 
each list, etc. The series of results of these evaluations is then sent out as a list.

int, or float An int or float received in any inlet is treated as a single-item list.

bang In left inlet: Evaluates the expression and sends out the results, using the most 
recently received lists of numbers.

Arguments
Obligatory. See expr.

Output
list When a list is received in the left inlet, vexpr uses the first item of the lists it has 

received in each of its different inlets, puts those items in place of the changeable 
arguments in the expression, and evaluates the expression. It then does the same 
with the second item in each list, and so on until it has used the last item of the 
shortest list. It then sends out all of the different results as a single list.

int If the input in one of the inlets was a single number rather than a list, and the 
expression is evaluated as an integer value, then a single result is sent out as an int 
rather than a list.

float If the input in one of the inlets was a single number rather than a list, and the 
expression is evaluated as a float value, then a single result is sent out as a float 
rather than a list.
481 



vexpr  Evaluate a math expression
for a list of different inputs
Examples

Perform the same calculation on a whole list of input values

See Also

expr Evaluate a mathematical expression
Tutorial 38 expr and if
 482



xbendin Interpret extra precision
MIDI pitch bend values

483 

Input
int The numbers are individual bytes of a MIDI message stream, received from an 

object such as midiin or seq. MIDI pitch bend messages are recognized by xbendin, 
and the pitch bend data is sent out in full precision.

Arguments
int Optional. The number specifies a MIDI channel on which to recognize pitch 

bend messages. If there is no argument, xbendin recognizes pitch bend messages 
on all channels, and the channel number is sent out the extra outlet on the right.

xbendin2 Optional. Normally, xbendin sends pitch bend values out the left outlet as 14-bit 
values. If the object is called xbendin2, however, there will be an additional outlet. 
The most significant data byte of the message is sent out the leftmost outlet, and 
the least significant data byte is sent out the second outlet.

Output
int The pitch bend value is sent out the left outlet of xbendin as a single 14-bit value. If 

the object is called xbendin2, there is an additional outlet. The most significant 7 
bits are sent out the leftmost outlet, and the least significant (extra precision) 7 
bits are sent out the second outlet. If there is no channel number specified as an 
argument (omni on), xbendin will have an extra outlet on the right, which will 
output the channel number of the incoming pitch bend message.

Examples

Pitch bend values are sent out as a single number or as two separate bytes

See Also

bendin Output received MIDI pitch bend messages
midiin Output received raw MIDI data
xbendout Format extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data



xbendout  Format extra precision
MIDI pitch bend messages
Input
int In left inlet: The number is a 14-bit pitch bend value to be formatted into a com-

plete MIDI pitch bend message by xbendout.

In right inlet: The number is stored as the MIDI channel for the pitch bend mes-
sage sent out by xbendout. Channel numbers greater than 16 will be wrapped 
around to stay within the 1-16 range.

list The first number is a 14-bit pitch bend value, and the second number is the chan-
nel. Both numbers are stored and are formatted into a MIDI pitch bend message 
which is sent out the outlet.

bang Sends out a MIDI pitch bend message using the numbers currently stored in 
xbendout.

Arguments
xbendout2 If the object is called xbendout2, there will be three inlets. The most significant 

byte of the pitch bend message is received in the left inlet, and the least significant 
(extra precision) byte is received in the middle inlet.

int Optional. The number sets an initial value for the MIDI channel of the pitch bend 
messages. If there is no argument, the initial channel number is 1.

Output
int When a pitch bend value is received in the left inlet, the complete MIDI pitch 

bend message is sent out the outlet, byte-by-byte.

Examples

14-bit pitch bend value is formatted into a MIDI message, which is sent out byte-by-byte
 484



xbendout Format extra precision
MIDI pitch bend messages
See Also

bendout Transmit MIDI pitch bend messages
midiout Transmit raw MIDI data
xbendin Interpret extra precision MIDI pitch bend messages
Tutorial 34 Managing raw MIDI data
485 



xnotein  Interpret MIDI note messages
with release velocity
Input
int The numbers are individual bytes of a MIDI stream from midiin. Whereas a note-

on with a velocity of 0 is most commonly used to indicate a note-off, xnotein also 
recognizes the MIDI note-off command, and outputs its release velocity. 

Arguments
int Optional. Specifies a channel number on which to look for incoming MIDI note-

on and note-off messages. Channel numbers greater than 16 will be wrapped 
around to stay within the 1-16 range. If there is no argument, xnotein recognizes 
note-on and note-off messages on all MIDI channels, and the channel number of 
the message is sent out the rightmost outlet.

Output
int Out left outlet: The pitch value of the incoming note-on or note-off message.

Out 2nd outlet: The key-down or key-up velocity of a note-on or a note-off mes-
sage.

Out 3rd outlet: The number is the indicator of whether the incoming MIDI mes-
sage is a note-on or a note-off. If the incoming message is a note-on, the output is 
1. If the incoming message is a note-off—or a note-on with a velocity of 0—the 
output is 0.

If no channel number is specified as an argument, xnotein has a 4th outlet on the 
right. The channel number of incoming messages is sent out the rightmost outlet.

Examples

Both note-on and note-off messages are interpreted, with a key-down or key-up velocity
 486



xnotein Interpret MIDI note messages
with release velocity
See Also

notein Output received MIDI note messages
midiin Output received raw MIDI data
xnoteout Format MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
487 



xnoteout  Format MIDI note
messages with release velocity
Input
int In left inlet: The number is used as the pitch value for a note-on or note-off mes-

sage, and the message is sent out the outlet byte-by-byte.

In left-middle inlet: The number is stored as the velocity for either a note-on or a 
note-off message. If no number has been received yet, the velocity for note-ons is 
64, and the velocity for note-offs is 0.

In right-middle inlet: The number is stored as the indicator of whether outgoing 
messages should be note-ons or note-offs. If the number is not 0, xnoteout will 
send out a note-on message. If the number is 0, xnoteout will send out a note-off 
message with a release velocity. If no number has been received yet, it is initially 1 
(note-on).

In right inlet: The number is stored as the channel for the MIDI message sent out 
by xnoteout. Channel numbers greater than 16 will be wrapped around to stay 
within the 1-16 range.

float In left inlet: Is not understood by xnoteout.

In other inlets: Converted to int.

list The first number is the pitch value, the second number is the velocity, the third 
number is the note-on/note-off indicator (non-zero for note-on, 0 for note-off), 
and the fourth number is the channel. The numbers are stored by xnoteout, and a 
MIDI note-on or note-off message is sent out.

bang Sends out a MIDI message using the numbers currently stored in xnoteout.

Arguments
int Optional. Sets an initial value for the MIDI channel of the outgoing messages. 

Channel numbers greater than 16 will be wrapped around to stay within the 1-16 
range. If there is no argument, the initial channel number is 1.

Output
int When a pitch value is received, a complete MIDI note-on or note-off message is 

sent out the outlet, byte-by-byte. Whereas a note-on with a velocity of 0 is most 
commonly used to indicate a note-off, xnoteout sends out the MIDI note-off 
command and uses the specified velocity as a release velocity.
 488



xnoteout Format MIDI note
messages with release velocity
Examples

The numbers are formatted into a MIDI note-on or note-off message, which is sent out byte-by-byte

See Also

noteout Transmit MIDI note messages
midiout Transmit raw MIDI data
xnotein Interpret MIDI note messages with release velocity
Tutorial 34 Managing raw MIDI data
489 



zl  Multi-purpose
list processing
The zl object performs several kinds of list processing functions. You set the function with a key-
word argument, and can change the function performed with the mode message. The behavior of 
the zl object’s inlets and outlets and the types of messages they expect or process varies according 
to the mode of the zl object. For brevity in the discussion that follows, we refer to any Max message 
as a list including single elements such as int, symbol, and float and messages that begin with a sym-
bol (a Max list is a message that begins with a number).

Input
mode The word mode, followed by one of the symbols group, iter, join, len, reg, rev, rotate, 

sect, slice, or union, sets the current mode of the zl object. For some modes of opera-
tion, A list received in the left inlet may be used as an argument to specify the 
functionality of a given mode. The items of messages that are not long enough to 
send out are added to the length of the stored list. Once the stored list is long 
enough, it is sent out the left outlet.

mode group takes an additional number argument which specifies the size, in ele-
ments, of a list. A list received in the left inlet will be stored and the length of the 
list is compared to a number received in the right inlet or an argument to the zl 
object. If the list of items is longer than the number specified by the right inlet or 
argument, a list of items of the length specified by the number is sent out the left 
outlet. Any remaining symbols or list elements are stored.

mode iter takes an additional number argument which specifies the size, in ele-
ments, of a list. A symbol list of items received in the left inlet will be stored and 
sent out the left outlet as a series of lists consisting of the number of items speci-
fied by argument or by a number received in the right inlet. The final list output 
may be shorter than the specified number of items, depending on the stored con-
tents of the zl object

mode join accepts a list in both inlets and sends a list out the left outlet which is the 
combination of both input lists.

 mode len accepts a list in the left inlet and outputs number of elements in the list 
out the left outlet. 

mode reg functions as a register that holds a list. A list received in the left inlet is sent 
out the left outlet immediately. A list received in the right inlet is stored. A bang 
sends the stored list out the left outlet.

mode rev accepts a list in its left inlet and sends the list out the left outlet in reverse 
order.

mode rotate is used to rotate the contents of a list. An additional argument is used to 
specify the number of places a list item is to be rotated—positive numbers rotate 
the list to the right, and negative numbers rotate left. This value can also be speci-
fied as an input in the right inlet in this mode.
 490



zl Multi-purpose
list processing
mode sect accepts a list in both inlets and sends a list out the left outlet that contains 
the elements common to both lists. 

mode slice is used to divide a list into two lists. This mode takes an additional num-
ber argument which specifies the size, in elements, of a list. This value can also be 
specified as an input in the right inlet in this mode. A list received in the let inlet 
will be split into two lists—the first list contains the number of items specified by 
the argument, and is sent out the left outlet. Any remaining list elements are sent 
out the right outlet of the object. Note: Lists are sent out the right outlet first.

mode union accepts a list in both inlets and sends a list out the left outlet that con-
tains the contents of both input lists. If the left and right inlets contain any items in 
common, only one symbol will be output.

list In left inlet: The behavior of the zl object to lists received in the left inlet varies 
according to the mode of the object, as described above under the mode message.

list In right inlet: Some modes of zl accept a list in the right inlet and behave as fol-
lows:

Mode Behavior

join The list is joined with the list received in the left inlet, and output 
when a bang or list is sent to the left inlet.

reg The list is stored, and sent out the left outlet when a bang is 
received by the left inlet.

sect The list is stored; when a bang or list is sent to the left inlet, items 
common to both lists are sent out the left outlet.

union The list is stored; when a bang or list is sent to the left inlet, a com-
bination of both lists without repeating items common to both 
lists is sent out the left outlet.

bang In left inlet: Sends a list out the left or left and right outlets as follows:

Mode Behavior

group Outputs the most recently stored N items out the left outlet, 
where N is specified by argument or a number received in the 
right inlet.

iter Outputs the most recently stored items out the left outlet in 
groups of a size specified by the argument or a number received 
in the right inlet.
491 



zl  Multi-purpose
list processing
join Outputs the combination of the lists received in the left and right 
inlets out the left outlet.

reg Outputs the currently stored list out the left outlet.

rev Outputs the reverse of the currently stored list out the left outlet.

rotate Outputs the currently stored list with the contents rotated N 
places out the left outlet, where N is set by argument or a number 
received in the right inlet.

sect Output the items in common to the lists received in the left and 
right inlets out the left outlet.

slice Divides the currently stored list into two, outputs the first N items 
out the left outlet and any remaining items out the right outlet, 
where N is set by argument or a number received in the right 
inlet.

union Output a list consisting of the items from both lists without 
repeating the items comment to both lists received in the left and 
right inlets out the left outlet.

int In right inlet: Some modes of zl accept an int in the right inlet and behave as fol-
lows:

Mode Behavior

group Specifies a number of the most recently stored list items to be out-
put.

iter The currently stored contents of the zl object will be output as a 
series of lists consisting of the number of items specified by this 
value. The final list output may be shorter than the number, 
depending on the stored contents of the object.

rotate Specifies the number of places to rotate the currently stored list. 
Positive values for rotate the list right, and negative values rotate 
left.

slice Specifies the number of list items to be sent out the left outlet of 
the zl object. Any remaining list elements beyond the number 
specified by this inlet are sent out the right outlet of the object.
 492



zl Multi-purpose
list processing
Arguments
symbol Optional. The words group, iter, join, len, reg, rev, rotate, sect, slice, or union are used as 

optional arguments to set the mode of the zl object. See the mode message above 
for descriptions of the different modes.

int Optional. For some modes of operation, an additional number may be used as an 
argument to specify the functionality of a given mode.

Mode Behavior

group Specifies a number of the most recently stored list items to be out-
put.

iter The currently stored contents of the zl object will be output as a 
series of lists consisting of the number of items specified by this 
value. The final list output may be shorter than the number, 
depending on the stored contents of the object.

rotate Specifies the number of places to rotate the currently stored list. 
Positive values for rotate the list right, and negative values rotate 
left.

slice Specifies the number of list items to be sent out the left outlet of 
the zl object. Any remaining list elements beyond the number 
specified by this value are sent out the right outlet of the object.

Output
list Out left outlet:

In group mode, a list containing the number of elements specified by the number 
argument.

In iter mode, a number of lists having the number of elements specified by the 
number argument. The final list output may be shorter than the specified number 
of items, depending on the stored contents of the zl object

In join mode, a list containing all the elements of the lists received in both inlets.

 In len mode, a number which corresponds to the number of list items.

In reg mode, the input or the most recently stored input value received in the right 
inlet.

In rev mode, the input list in reverse order.
493 



zl  Multi-purpose
list processing
In rotate mode, the input list rotated to the right or left according to the positive or 
negative specified by the number argument.

In sect mode, a list containing all the elements common to the lists received in 
both inlets.

In slice mode, a list containing the number of elements specified by the number 
argument.

In union mode, a a list containing the items from both lists without repeating items 
common to both lists. If the left and right inlets contain any items in common, 
only one symbol will be output.

list Out the right outlet: In slice mode, a list containing any list elements beyond the 
numbered element specified by the number argument.

Examples

zl is the Swiss Army Knife for lists

See Also

fromsymbol Transform a symbol into individual numbers or messages
maximum Output the greatest in a list of numbers
minimum Output the smallest in a list of numbers
pack Combine numbers and symbols into a list
swap Reverse the sequential order of two numbers
thresh Combine numbers into a list, when received close together
tosymbol Convert messages, numbers, or lists to a single symbol
 494



Appendix QuickTime and
graphic file formats
Some Max objects (such as fpic, matrixctrl, and pictctrl) will let you open and use an extened set of 
graphics files if you have QuickTime installed on your system. The following graphics file formats 
are currently supported:

MooV
sooV
TVex
MPG 
MPEG
VfW 
dvc!
FLI ',
GIFf
BINA
qmed
Cach
SWFL
RTSP
SDP 
SwaT
SMI
JPEG
3DMF
MPGv
MPGx
BMP 
8BPS
PNGf
PNG 
qdgx
qtif
SGI 
TPIC
TIFF
FLI 
PICS

For an up-to-date list of graphics file formats supported by QuickTime, see

http://www.apple.com/quicktime/pdf/QuickTime_Pro_DS-b.pdf
495



Appendix QuickTime and
graphic file formats
See Also

fpic Display a picture from a graphics file
lcd Draw graphics in a patcher window
matrixcrtrl Matrix-style switch control
pictctrl Picture-based control
pictslider Picture-based slider
496



Object Thesaurus Objects listed
by task keyword
Absolute to a relative path conversion .......................................................................... relativepath
Absolute value of an integer.............................................................................................. abs, expr
Accelerate, control clock speed of Max timing objects ........................................................setclock
Action patch, receive events (messages) from a timeline ........................................................tiCmd
Active sensing, MIDI system message...............................................................midiin, midiout, rtin
Add and/or multiply a series of numbers.............................................................accum, expr, table
Add two numbers together ....................................................................................... accum, expr, +
Address elements in an array by index number.....................................counter, funbuff, offer, table
ADSR envelope generator..................................................................................................env, envi
Afterpressure, polyphonic ....................................................................................... polyin, polyout
Aftertouch (monophonic) MIDI message........................................................... touchin, touchout
Alert, display a text message ..........................................dialog, lcd, umenu, message, pcontrol, print
Alert, flash when an event occurs..................................................................... button, led, ubutton
All notes off (MIDI Mode message) ..............................................................................ctlin, ctlout
And, true if both statements are true (logical intersection) ................................................ expr, &&
Animation of shapes or pictures ...........................frame, graphic, lcd, oval, pics, pics2, pict, rect, ring
Animation sequence of pictures stored in PICS format....................................................pics, pics2
Animation, control a laser videodisc player .................................................................... serial, vdp
Animation, play a QuickTime movie.............................................. imovie, movie, playbar, timeline
Append items at the end or beginning of a message.............................................. append, prepend
Apple CD audio control ............................................................................................................. cd
Arc-cosine function ................................................................................................................ acos
Arc-sine function .....................................................................................................................asin
Arc-tangent function (two variables) ....................................................................................atan2
Arc-tangent function...............................................................................................................atan
Arithmetic expression solving ............................................................................... expr, +, -, *, /, %
Array of arbitrary messages .......................................................................................... coll, umenu
Array of numbers .................................................................................... funbuff, Histo, offer, table
ASCII number for each character in a string............................................................................spell
ASCII number, convert to text character ..............................................................................sprintf
ASCII numbers, convert symbol to .........................................................................................spell
Ask for a file or folder.....................................................................................................opendialog
Ask the user to enter information ...........................................................................dialog, message
Assistance, attach an assistance message to an inlet or outlet in a subpatch ...................inlet, outlet
Atoms of a list, break up into individual messages ........................cycle, iter, message, spray, unpack
Audio CD playback .................................................................................................................... cd
Average a running stream of numbers ................................................................................... mean
Background panel ................................................................................................................. panel
Background, notify objects when patcher window is moved to background..........................active
bang a certain number of times as fast as possible ....................................................................... Uzi
bang automatically when a patch is loaded.........................................................................loadbang
bang messages, count........................................................................................................... counter
bang repeatedly at a certain rate ..............................................................................................metro
bang when a message is received or the mouse is clicked ..........................................button, ubutton
bang when a patcher window is closed..............................................................................closebang
bang, cause all loadbang objects in a patcher window to resend.......................................thispatcher
497 



Object Thesaurus  Objects listed
by task keyword
bang, send a single bang to different places in immediate succession......................bangbang, trigger
bang, time elapsed between two bang messages ....................................................................... timer
Bend, report incoming MIDI pitchbend data ..............................bendin, midiin, xbendin, xbendin2
Bend, transmit MIDI pitchbend messages.......................... bendout, midiout, xbendout, xbendout2
bang message traffic control................................................................................................onebang
Binary numbers, compare with bitwise "and" (intersection) and bitwise "or" (union) ......expr, &, |
Binary numbers, shift the bits of a number’s binary representation to the left or right .........<<, >>
Binary, display numbers as ........................................................................................... number box
Bit-shift, shift the bits of the number’s binary representation to the left or right ..................<<, >>
Bitwise one’s complement operation........................................................................................ expr
Bitwise operators, bitwise "and" (intersection) and bitwise "or" (union) ...........................expr, &, |
Boolean logic operations ..................................................................if, <, <=, ==, !=, >=, >, &&, ||
Breakpoint line segment function generation and storage ............................ env, envi, funbuff, line
Breath control................................................................................................................ctlin, ctlout
Broadcast a message to all instances of the same class in a patcher .................................... universal
Brownian motion simulator ..................................................................................................drunk
Button for user interface, sends a 1 or a 0 to start or stop processes..................................led, toggle
Button for user interface, sends a bang .....................................................................button, ubutton
Button pasted over a picture or a comment.........................................................................ubutton
Button, picture-based.......................................................................................................... pictctrl
C language expression solving ............................................................................................. expr, if
Capture and display a series of numbers...................................................capture, print, table, Text
Cartesian to Polar coordinate conversion .......................................................................... cartopol
CD audio control ....................................................................................................................... cd
Chance operations using pseudo-random numbers ..................................drunk, expr, random, urn
Characters in a string of text, convert to ASCII numbers .........................................................spell
Check box user interface object ..................................................................................... radiogroup
Circle or oval, drawing in a graphic window .....................................................................oval, ring
Clock for reporting time elapsed ................................................................................clocker, timer
Clock speed of Max timing objects, control ........................................................................setclock
Clock, MIDI system message............................................................................midiin, midiout, rtin
Close a patcher window automatically.............................................................pcontrol, thispatcher
Closing a patcher window, send a bang when window is closed ........................................closebang
Collection of messages, store and recall ........................................................................ coll, umenu
Color selection using a modal dialog ..............................................................................colorpicker
Color swatch for RGB color selection and display................................................................ swatch
Colored button area............................................................................................................... panel
Combinatorics, produce random orderings of a set .................................................................. urn
Commands, place your own commands in the menu bar................................................. menubar
Commands, send to a timeline from one of its own action patches...... thisTimeline, thisTrack, tiOut
Commenting a patch........................................................................................................comment
Compare a performance to a pre-recorded sequence in real time ......................................... follow
Comparison of two numbers, less than, greater than, or equal to ............... if, <, <=, ==, !=, >=, >
Complement, bitwise one’s complement operation.................................................................. expr
Compute x to the power of y.................................................................................................... pow
Computer keyboard events, detect.....................................................................key, keyup, numkey
 498



Object Thesaurus Objects listed
by task keyword
Concatenate two messages.................................................................................... append, prepend
Conditional statements ................................................ if, match, select, split, ==, !=, <, >, <=, >=
Connect patch cords to an inlet or outlet of a subpatch.................................................inlet, outlet
Constrained random movement ...........................................................................................drunk
Construct a list out of individual items .........................................................append, pack, prepend
Construct MIDI messages for transmission or recording ...............................midiformat, sxformat
Continue, MIDI system message ......................................................................midiin, midiout, rtin
Continuous controllers..................................................................................................ctlin, ctlout
Control a patcher window automatically from within itself............................................thispatcher
Control a timeline from one of its own action patches ......................... thisTimeline, thisTrack, tiOut
Control a videodisc player through the serial port .................................................................... vdp
Control change messages...............................................................................................ctlin, ctlout
Control clock speed of Max timing objects.........................................................................setclock
Control external (non-MIDI) device......................................................................... cd, serial, vdp
Control points in a function ..............................................................................................env, envi
Control strip for a QuickTime movie.................................................................................. playbar
Control, picture-based ........................................................................................................ pictctrl
Convert a number, list, or symbol to bang.................................................button, bangbang, trigger
Convert an absolute to a relative path........................................................................... relativepath
Convert ASCII numbers to text ............................................................................................sprintf
Convert numbers between decimal, hexadecimal, and binary forms ............................ number box
Convert text to ASCII numbers ...............................................................................................spell
Cosine function.........................................................................................................................cos
Count how many bang messages or numbers have been received ........................................ counter
Count the occurrences of numbers.........................................................................................Histo
Count, send a series of numbers as fast as possible..................................................................... Uzi
Cumulative total of a series of numbers ...............................................................accum, expr, table
Data structures, arbitrarily ordered array of arbitrary messages.................................... coll, umenu
Date and time of day ...............................................................................................................date
Decimal numbers, store numbers with a fractional part ...................................... float, number box
Decrement the value of a user interface object ...................................................................... IncDec
Define a region for dragging and dropping a file.................................................................dropfile
Delay a bang for a specific amount of time...............................................................................delay
Delay note-off messages until a specific event occurs...........................................................sustain
Delay one or more numbers for a specific amount of time ............................................pipe, thresh
Delay, measure the time elapsed between two events................................ Borax, clocker, date, timer
Delta time, report time interval between onsets of MIDI notes.................................... Borax, timer
Devices, drive external devices such as videodisc players and CD ROM drives.......... cd, serial, vdp
Devices, get a list of MIDI devices and ports currently available via OMS ..........................omsinfo
Dial for sending numbers .........................................................................................................dial
Difference between two numbers, obtain by subtracting ...................................................... expr, -
Directory, list the contents of a folder.....................................................................................folder
Discrete values from a continuous stream of data ............................................................. speedlim
Display numbers in decimal, hexadecimal, or binary form ........................................... number box
Display numerical data graphically... dial, envi, hslider, kslider, multiSlider, number box, slider, table, 

uslider
499 



Object Thesaurus  Objects listed
by task keyword
Display the zero/non-zero status of a number ............................................ led, number box, toggle
Distribute incoming numbers out individual outlets .............................................................. cycle
Divide one number by another............................................................................................. expr, /
Divide two numbers, output the remainder .................................................................................%
Division object (inlets reversed) .................................................................................................. !/
Drag and drop....................................................................................................................dropfile
Draw a picture in a graphic window ............................................................graphic, pics, pics2, pict
Draw shapes in a graphic window...................................................... frame, graphic, oval, rect, ring
Draw shapes in a patcher window.............................................................................................. lcd
Draw with the mouse ............................................................................................. lcd, MouseState
Duration, report length of MIDI notes ..................................................................................Borax
Duration, specify for transmitted MIDI notes ................................flush, makenote, midiflush, pipe
DVD Player application....................................................................................................appledvd
Enable or disable MIDI objects in a patcher automatically................................................. pcontrol
End of a message, add items to............................................................................................ append
Enter numerical data into a patcher from the computer keyboard ...................number box, numkey
Enter text typed in by the user ................................................................................dialog, message
Envelope generator............................................................................................................env, envi
Error messages, display text in a patcher window....................dialog, lcd, umenu, message, pcontrol
Error messages, print in the Max window ............................................................................... print
Event number, assign to each MIDI note ...............................................................................Borax
Exclusive or, bitwise XOR operation ........................................................................................ expr
Export MIDI file .......................................................................................................................seq
Expressions, solve mathematical.............................................................................expr, +, -, *, /, %
External clock source, synchronize Max to ............................................................. setclock, timein
Extra precision MIDI pitchbend messages ........................xbendin, xbendin2, xbendout, xbendout2
Fader for displaying or generating numerical data ..............hslider, multiSlider, rslider, slider, uslider
File  modification date ........................................................................................................ filedate
File menu, add your own items to ..................................................................................... menubar
File, import and export MIDI files.............................................................................................seq
File, open any type of..............................................................................................................filein
Files, list the files in a specific folder .......................................................................................folder
Film or video, synchronize Max to ......................................................................... setclock, timein
Filter a continuous stream of messages ............................................................................. speedlim
Floating-point numbers, store numbers with a fractional part............................. float, number box
Folder content listings ...........................................................................................................folder
Follow a performance, comparing it to a pre-recorded sequence .......................................... follow
Foreground, move a patcher window automatically to the front ....................................thispatcher
Foreground, notify objects when patcher window is brought to foreground ..........................active
Format MIDI messages for transmission or recording....................................midiformat, sxformat
Format numbers, ASCII bytes, and symbols into a single message........................................sprintf
Fourteen-bit precision MIDI pitchbend messages .............xbendin, xbendin2, xbendout, xbendout2
Fraction, obtain by dividing one number by another............................................................ expr, /
Fractions, store numbers with a fractional part......................................float, number box, pv, value
Frequency, keep track of how many times a number has occurred..........................................Histo
Full pathname to filename conversion ..............................................................................strippath
 500



Object Thesaurus Objects listed
by task keyword
Function generator ....................................................................................... env, envi, funbuff, line
Gate the flow of messages ..............................................................................................gate, Ggate
Generate numbers with the mouse .....dial, envi, hslider, imovie, kslider, lcd, MouseState, multiSlider, 

number box, rslider, slider, table, uslider
Get filename from a full pathname ...................................................................................strippath
Global message-sending................................. float, forward, grab, int, message, receive, send, value
Global variables.................................................................................................................pv, value
Graphic display of an array of numbers, editable with the mouse ......................... multiSlider, table
Graphic editor for arranging Max messages to be sent to specific objects at specific times . timeline
Graphics, draw a picture in a graphic window ..........................................................................pict
Graphics, draw shapes in a graphic window....................................... frame, graphic, oval, rect, ring
Graphics, draw shapes in a patcher window............................................................................... lcd
Graphics, put a picture in a patcher window ............................................................................. fpic
Greater than and less than comparisons, redirect numbers based on ....................................... split
Greater than, find the greater of two numbers...................expr, maximum, number box, Peak, >, >=
Greater than, report when all numbers in a list surpass specific thresholds .............................. past
Held MIDI notes, provide note-off messages for ..........................Borax, flush, makenote, midiflush
Hexadecimal, display numbers as ................................................................................. number box
Hierarchical on/off switch ................................................................................................... decode
Hint, pop-up menu ................................................................................................................. hint
Histogram of how many times a number has occurred ..........................................................Histo
Hold one or more numbers ..............................float, funbuff, int, number box, offer, pv, table, value
Hold the smallest in a series of numbers .............................................................................. Trough
Hyperbolic cosine function ..................................................................................................... cosh
Hyperbolic sine function......................................................................................................... sinh
Hyperbolic tangent function ...................................................................................................tanh
If-then-else control structure....................................................................................................... if
Ignore certain messages........................................... gate, Ggate, Gswitch, mousefilter, select, switch
Import MIDI file .......................................................................................................................seq
Incoming MIDI messages, parse ........ midiparse, xbendin, xnotein also bendin, ctlin, notein, pgmin, 

polyin, rtin, sysexin, touchin
Increment the value of a user interface object ....................................................................... IncDec
Index number, prepend to a number or a list ..........................................................funnel, prepend
Indexed list of numerical values........................................................................ funbuff, offer, table
Indicate the zero/non-zero status of a number ..............if, led, number box, TogEdge, toggle, ==, !=
Indicator flashes when a message is received .................................................... button, led, ubutton
Information about current operating system and hardware ................................................ gestalt
Initialize values automatically when a patch is loaded ............................................loadbang, preset
Inlet for a subpatch object............................................................................ bpatcher, inlet, patcher
Inlet, ignore messages in all inlets but one at a time............................................................... switch
Input from the user, ask for.....................................................................................dialog, message
Input received from MIDI devices, unaltered ....................................................................... midiin
Integer number, store................................................funbuff, int, number box, offer, pv, table,  value
Intercept and redirect the output of an object ..........................................................................grab
Inter-onset interval, measure the time elapsed between two events .......... Borax, clocker, date, timer
Interpolate between two numerical values ................................................................................ line
501 



Object Thesaurus  Objects listed
by task keyword
Invert the color of a rectangular area of a patcher window over a picture or a comment......ubutton
Invisible button ..................................................................................................................ubutton
Invisible patcher, close ...................................................................................................thispatcher
Invisible patcher, load ........................................................................................................ pcontrol
Items of a list, break up into individual messages ..........................cycle, iter, message, spray, unpack
Keyboard style slider for displaying and generating numbers ...............................................kslider
Keyboard, detect computer keyboard events .....................................................key, keyup, numkey
Keydown event on computer keyboard, detect ......................................................................... key
Keyup event on computer keyboard, detect ...........................................................................keyup
Knob, picture-based............................................................................................................ pictctrl
Label objects in a patcher window ........................................................................comment, umenu
Laser disc player, control via the serial port..................................................................... serial, vdp
Last (few) of a series of numbers are retained and sent out separate outlets...........................Bucket
Less than and greater than comparisons, redirect numbers based on....................................... split
Less than, find the lesser of two numbers ....................... expr, minimum, number box, Trough, <, <=
Limit the rate at which messages are sent .......................................................................... speedlim
List of indexed messages in a pop-up menu......................................................................... umenu
List of numbers, detect a specific ordered set within ............................................................. match
List processing............................................................................................................................. zl
List the files in a specific folder...............................................................................................folder
List, break up items into individual messages................................cycle, iter, message, spray, unpack
List, combine separate items into .......................................................append, pack, prepend, thresh
List, evaluate a mathematical expression multiple times using lists of numbers as input......... vexpr
List, graphically display and send out a list of number values......................................... multiSlider
Lists, array of ................................................................................................................ coll, umenu
Load a patcher automatically ............................................................................................. pcontrol
Local variable for any message, known only to a single patcher and its subpatches .....................pv
Local variable for storing a floating-point number (with a fractional part)..... float, number box, pv
Local variable for storing an integer value..........................................................int, number box, pv
Logarithm of a number, solve for ............................................................................................. expr
Loops, count repeated events.............................................................................................. counter
Loops, repeated series of actions.........................................................................counter, metro, Uzi
Markov chain ..........................................................................................................................prob
Masking, bitwise "and" (intersection) and bitwise "or" (union) operations.......................expr, &, |
Match incoming message to arguments, send a bang out a specific outlet if there is a match ...select
Match the first item in a message, route the message accordingly ............................................route
Mathematical expression solving........................................................................... expr, +, -, *, /, %
Matrix-style switch control.............................................................................................matrixcrtrl
Max search path information .............................................................................................filepath
Maximum and minimum limit for a range of numerical values, specify and display..... rslider, split
Maximum, find the greater of two numbers......................expr, maximum, number box, Peak, >, >=
Maximum, find the maximum value of a group of numbers.................................. maximum, table
Menu bar, customize or alter menus or menu items .......................................................... menubar
Menu, pop-up menu in a patcher ........................................................................................ umenu
Message symbol substitution...........................................................................................substitute
Messages, construct MIDI messages for transmission or recording ................midiformat, sxformat
 502



Object Thesaurus Objects listed
by task keyword
Messages, construct....................................................................... append, message, pack, prepend
Messages, send and display....................................................................................umenu, message
Messages, send remotely without patch cords .....float, forward, grab, int, message, pv, receive, send, 

value
Messages, send with the menu bar .................................................................................... menubar
Messages, type in and send in a locked patcher.......................................................dialog, message
Metronome of timed events.............................................................. clocker, metro, setclock, tempo
MIDI data, receive unaltered ................................................................................................ midiin
MIDI data, transmit byte by byte........................................................................................midiout
MIDI file, record, play, import, export, and save as text ..............................................................seq
MIDI Manager, generate time code information in Max to send to other applications........timeout
MIDI Manager, synchronize Max to an external clock source................................. setclock, timein
MIDI messages, construct .................................................................midiformat, sxformat, midiout
MIDI messages, parse........................................................................... midiparse, xbendin, xnotein
MIDI Mode messages ...................................................................................................ctlin, ctlout
MIDI note messages, receive incoming.........................................................midiin, notein, xnotein
MIDI note messages, transmit............................................................... midiout, noteout, xnoteout
MIDI note names, display numbers as.......................................................................... number box
MIDI Real Time system messages.....................................................................midiin, midiout, rtin
MIDI Sample Dump, receive and transmit ................................................. midiin, midiout, sysexin
MIDI, enable or disable MIDI objects in a patcher automatically ...................................... pcontrol
Minimum and maximum limit for a range of numerical values, specify and display..... rslider, split
Minimum, find the lesser of two numbers ..................... expr, minimum, number box, Trough, <, <=
Minimum, find the minimum value of a group of numbers....................................minimum, table
Minus, subtract one number from another........................................................................... expr, -
Modem communication, transmit and receive non-MIDI data..............................................serial
Modification date of a file ................................................................................................... filedate
Modulation wheel .........................................................................................................ctlin, ctlout
Modulus operation..............................................................................................................expr, %
Monitor size ....................................................................................................................screensize
Monophonic aftertouch MIDI message............................................................... touchin, touchout
Mouse button, pass numbers through only when the mouse button is up......................mousefilter
Mouse button, report status of...................................................................................... MouseState
Mouse events, detect................................................................. imovie, lcd, mousefilter, MouseState
Mouse location, report ................................................................................imovie, lcd, MouseState
Mouse, generate numbers with the mouse ............dial, envi, hslider, imovie, kslider, lcd, MouseState, 

multiSlider, number box, rslider, slider, 
table,uslider

Movie, play QuickTime .................................................................. imovie, movie, playbar, timeline
Multi-media programming .......................................... cd, graphic, lcd, imovie, movie, timeline, vdp
Multiply and/or add a series of numbers..............................................................accum, expr, table
Multiply two numbers ...............................................................................................accum, expr, *
Multi-purpose list processor ....................................................................................................... zl
Multi-track sequencer of MIDI messages or numbers .............................................................. mtr
Name user interface objects in a patcher window..................................................comment, umenu
Negative number, convert to positive number................................................................... abs, expr
503 



Object Thesaurus  Objects listed
by task keyword
Nibble, examine selected bits of a number’s binary representation.............................&, /, |, <<, >>
Noise, filtered noise generator................................................................................................drunk
Noise, white noise generator ....................................................................................... expr, random
Non-zero and zero numbers, notify when input changes from one to the other.....change, TogEdge
Non-zero, test if a number or expression ischange, if, led, select, split, TogEdge, toggle, ==, !=, &&, ||
Not, bitwise one’s complement operation ................................................................................ expr
Not, convert a non-zero number to 0 and vice versa...........................................................expr, ==
Note data, receive incoming MIDI................................................................midiin, notein, xnotein
Note information (duration, delta time, etc.) derived from MIDI note messages................... Borax
Note messages, transmit MIDI .............................................................. midiout, noteout, xnoteout
Note-off messages with release velocity, detecting and formatting ....................... xnotein, xnoteout
Note-off messages, hold until a specific event occurs ...........................................................sustain
Note-off messages, supply for held or stuck MIDI note-ons ..bag, Borax, flush, makenote, midiflush
Note-off messages, suppress .....................................................................................gate, stripnote
Notes to yourself—or another user—in a patcher window...............................................comment
Notify objects when patcher window is moved to foreground or background .......................active
Notify user when an event has occurred ...................................button, led, message, print, ubutton
Number sequences, generate automatically .......................................... counter, line, clocker, tempo
Number, store...................................................float, funbuff, int, number box, offer, pv, table, value
Numbers, convert between decimal, hexadecimal, and binary...................................... number box
Numbers, generate with the mouse.....dial, envi, hslider, imovie, kslider, lcd, MouseState, multiSlider, 

number box, rslider, slider, table, uslider
Nybble, examine selected bits of a number’s binary representation .............................. &, |, <<, >>
Object within an object ........................................................................................bpatcher, patcher
Occurrences, keep track of how many bang messages have occurred ................................... counter
Occurrences, keep track of how many times a number has occurred ......................................Histo
Octal, display numbers in Roland octal format............................................................. number box
OMNI Mode On/Off (MIDI Mode message) ...............................................................ctlin, ctlout
OMS, get a list of currently available MIDI devices and ports .............................................omsinfo
On/Off switch ..........................................................................................................decode, toggle
Open a dialog to ask for a file or folder...........................................................................opendialog
Open a dialog to ask for a filename for saving .................................................................savedialog
Open a patcher automatically ............................................................................................ pcontrol
Open patcher files automatically.............................................................................. folder, pcontrol
Operating system and hardware information ...................................................................... gestalt
Or, bitwise exclusive or (XOR) operation ................................................................................ expr
Or, true if one statement or the other is true (logical union) .................................................expr, ||
Order, send a number, bang, list, or symbol to different places in a specific order .................. trigger
Order, switch order of number messages ....................................................... fswap, message, swap
Ordered set of numbers, detect............................................................................................. match
Outlet for a subpatch object....................................................................... bpatcher, outlet, patcher
Outlet, send items of an incoming list out individual outlets.......................................spray, unpack
Outlet, send messages out one of the outlets of a timeline object............................................. tiOut
Output MIDI data byte by byte ..........................................................................................midiout
Output the monitor size ..................................................................................................screensize
Oval or circle, drawing in a graphic window .....................................................................oval, ring
 504



Object Thesaurus Objects listed
by task keyword
Panel ..................................................................................................................................... panel
Panic, turn off held MIDI notes......................................... Borax, ctlout, flush, makenote, midiflush
Panning.........................................................................................................................ctlin, ctlout
Parameter change to a MIDI device...........................................................ctlout, midiout, sxformat
Parse incoming MIDI messages......... midiparse, xbendin, xnotein, also bendin, ctlin, notein, pgmin, 

polyin, rtin, sysexin, touchin
Pass numbers through only when the mouse button is up .............................................mousefilter
Patch change MIDI message....................................................................................pgmin, pgmout
Patch cords, connect to an inlet or outlet of a subpatch .................................................inlet, outlet
patcher within a patcher, the contents of which are visible ................................................ bpatcher
Peak hold, keep track of the greatest in a series of numbers..................................................... Peak
Peek at values in other objects..................................................................................................grab
Permute a set in random order ................................................................................................. urn
PICS format for animation sequence of pictures..............................................................pics, pics2
Picture, display a graphics file in a patcher window................................................................... fpic
Picture, display PICT or PICS file in a graphic window.............................................pics, pics2, pict
Picture-based control .......................................................................................................... pictctrl
Picture-based slider..........................................................................................................pictslider
Pitchbend, report incoming MIDI pitchbend data ......................bendin, midiin, xbendin, xbendin2
Pitchbend, transmit MIDI pitchbend messages .................. bendout, midiout, xbendout, xbendout2
Play a QuickTime movie ................................................................ imovie, movie, playbar, timeline
Play a sequence of Max messages to be sent to specific objects at specific times ................. timeline
Play sequences of past messages or numbers ...........................................................follow, mtr, seq
Plus, add two numbers together................................................................................ accum, expr, +
Polar to Cartesian coordinate conversion .......................................................................... poltocar
Poly mode, assign a unique voice number to each note being played ............................. Borax, poly
Polyphonic afterpressure ...................................................................................................... polyin
Pop-up menu in a patcher ................................................................................................... umenu
Pop-up style hint text .............................................................................................................. hint
Portamento ........................................................................................ bendin, bendout, ctlin, ctlout
Ports, get a list of MIDI devices and ports currently available via OMS...............................omsinfo
Positive version of a negative number ............................................................................... abs, expr
Postpone a bang ......................................................................................................................delay
Postpone a number or list.............................................................................................pipe, thresh
Postpone note-off messages until a specific event occurs .....................................................sustain
Potentiometer-like dial for sending numbers............................................................................dial
Power, one number to the power of another ............................................................................ expr
Prepend one message at the beginning of another ............................................................. prepend
Preset, store and recall values for all user interface objects..................................................... preset
Print any message in the Max window .................................................................................... print
Probabilistic (stochastic) decision making ...................................... drunk, prob, random, table, urn
Probability, keep track of how many times a number has occurred.........................................Histo
Product of multiplying two numbers.........................................................................accum, expr, *
Program change MIDI message ..............................................................................pgmin, pgmout
Progress bar, graphic display........................................................................... hslider, slider, uslider
Pseudo-random number generator ...........................................................drunk, expr, random, urn
505 



Object Thesaurus  Objects listed
by task keyword
QuickDraw graphic commands, draw with ............................................................................... lcd
QuickTime movie, play .................................................................. imovie, movie, playbar, timeline
Radio button user interface object ................................................................................. radiogroup
Ramp function, generate ............................................................................................line, timeline
Random number generator .......................................................................drunk, expr, random, urn
Random walk ........................................................................................................................drunk
Range of numerical values, specify and display minimum and maximum limits .......... rslider, split
Rate at which messages are sent, limit ............................................................................... speedlim
Rate, combine numbers into a single list if received faster than a certain speed ..................... thresh
Rate, control clock speed of Max timing objects .................................................................setclock
Rate, send out beat numbers at a metronomic tempo............................................................tempo
Raw data from a file, read byte by byte ....................................................................................filein
Raw MIDI data, receive and transmit ......................................................... midiin, midiout, sysexin
Read in a file of binary data ....................................................................................................filein
Real Time MIDI system messages.....................................................................midiin, midiout, rtin
Recall sequences of past messages or numbers.........................................................follow, mtr, seq
Receive any message from any window................................................................................ receive
Receive MIDI data unaltered ................................................................................................ midiin
Receive only specific MIDI messages......... bendin, ctlin, notein, pgmin, polyin, rtin, sysexin, touchin
Recently received values are stored and recalled....................................................................Bucket
Record sequences of MIDI data or numbers............................................................follow, mtr, seq
Rectangle or square, drawing in a graphic window ........................................................ frame, rect
Redirect messages to a specific destination ....................gate, Ggate, grab, route, split, spray, unpack
Release velocity, detecting and formatting note-off messages with....................... xnotein, xnoteout
Remainder from dividing one number by another, modulus operation ...............................expr, %
Remote connection of objects, without patch cords.... float, forward, grab, int, message, pv, receive, 

send, value
Repeatedly send bang messages as fast as possible....................................................................... Uzi
Repeatedly send output at a certain rate..........................................................clocker, metro, tempo
Repetitions, count .............................................................................................................. counter
Repetitions, suppress repeated numbers ..............................................................................change
Report information about the current Max search path......................................................filepath
Report the modification date of a file.................................................................................. filedate
Reports when application is suspended and resumed ........................................................ suspend
Reproduce a single bang to different places in immediate succession ....................bangbang, trigger
Reverse the order of two number messages.................................................... fswap, message, swap
RGB color selection and display swatch ............................................................................... swatch
Ritardando, control clock speed of Max timing objects ......................................................setclock
Rotate elements of a set of numbers, out successive outlets ..........................................Bucket, cycle
Route messages to a specific destination ................................ gate, Ggate, route, split, spray, unpack
Sampler, receive and transmit sound data via MIDI Sample Dump ............ midiin, midiout, sysexin
Save As file dialog ...........................................................................................................savedialog
Save, move to the foreground, or close a patcher window automatically.........................thispatcher
Schedule a number or list to be sent at a future time......................................................pipe, thresh
Schedule an event for a future time .........................................................................................delay
Score of Max messages to be sent to specific objects at specific times ................................. timeline
 506



Object Thesaurus Objects listed
by task keyword
Score-following .................................................................................................................... follow
Screen size .......................................................................................................................screensize
Scroll through a list of messages .......................................................................................... umenu
SCSI control of CD ROM drive .................................................................................................. cd
Search path information.....................................................................................................filepath
Select a color using a modal dialog .................................................................................colorpicker
Select specific values or symbols from incoming messages ....................................................select
Selector, route messages depending on the first item of each message .....................................route
Send a message to all instances of the same class in a patcher............................................ universal
Send a message to receive objects in any other window.........float, forward, grab, int, message, send
Separate a list into its constituent elements ................................................. cycle, iter, spray, unpack
Sequence of numbers, detect a specific ordered set of numbers ............................................ match
Sequence of numbers, generate automatically....................................... counter, line, clocker, tempo
Sequencer of Max messages to be sent to specific objects at specific times ......................... timeline
Sequencer................................................................................................................follow, mtr, seq
Serial port, transmit and receive non-MIDI data ...........................................................serial, spell
Series of numbers, break a list up into individual messages...........cycle, iter, message, spray, unpack
Series of numbers, combine into a single list ......................................................................... thresh
Set (of fixed order and size) of integers; output all whenever one is modified........................ bondo
Set values automatically when a patch is loaded .....................................................loadbang, preset
Set, produce a random ordering of a set.................................................................................... urn
Set, store an unordered set of numbers .....................................................................................bag
Shift sequential input from one outlet to another.........................................................Bucket, cycle
Simultaneity, send a series of bang messages or numbers in a single tick of Max’s clock .............. Uzi
Sine function............................................................................................................................. sin
Sine, cosine, tangent, and other trigonometric functions ......................................................... expr
Slider to display or generate numerical data............ hslider, kslider, multiSlider, rslider, slider, uslider
Slider, picture-based.........................................................................................................pictslider
SMPTE time code format to send time info to other applications in MIDI Manager ..........timeout
SMPTE time code, synchronize to an external source via MIDI Manager .............. setclock, timein
Snapshot, store and recall instantaneous values of all user interface objects .......................... preset
Sound sample data, receive and transmit via MIDI Sample Dump ............. midiin, midiout, sysexin
Sound, play in a QuickTime movie................................................. imovie, movie, playbar, timeline
Sparse array of numbers ............................................................................................ funbuff, offer
Speed, combine numbers into a single list if received faster than a certain rate ...................... thresh
Speed, limit the rate at which messages are sent ................................................................ speedlim
Sprites, pictures and geometric shapes..................frame, graphic, lcd, oval, pics, pics2, pict, rect, ring
Square or rectangle, drawing in a graphic window......................................................... frame, rect
Square root of a number, solve for ...........................................................................................expr
Start a process by sending the bang message ............................................ button, loadbang, ubutton
Start activity automatically when a patch is loaded ...........................................................loadbang
Start, MIDI system message .............................................................................midiin, midiout, rtin
Steal voices, turn off old notes if too many new ones arrive...................................................... poly
Stochastic (probabilistic) decision making...................................... drunk, prob, random, table, urn
Stop or alter the flow of messages........................................... gate, Ggate, Gswitch, speedlim, switch
Stop, MIDI system message ..............................................................................midiin, midiout, rtin
507 



Object Thesaurus  Objects listed
by task keyword
Store a fixed-size set of integers; output all whenever one element is modified ...................... bondo
Store a series of numbers in order in an editable window...................................capture, table, Text
Store an unordered set of numbers ...........................................................................................bag
Store and recall recently received values .............................................................. Bucket, table, Text
Store and recall values of all user interface objects at a certain moment................................. preset
Store one or more numbers ..............................float, funbuff, int, number box, offer, pv, table, value
Store, recall, and automatically delete x,y pairs of numbers..................................................... offer
String of text combining numbers, ASCII bytes, and symbols into a single message .............sprintf
Stuck MIDI notes, avoid or turn off ..............................................Borax, flush, makenote, midiflush
Subpatch in a box, visible from the patcher that contains it ............................................... bpatcher
Subpatch object (subroutine) ...............................................................................bpatcher, patcher
Subpatch object, create an inlet or outlet in...................................................................inlet, outlet
Subsitute a symbol for another symbol in a message........................................................substitute
Subtract one number from another ...................................................................................... expr, -
Subtraction object (inlets reversed) ............................................................................................. !-
Sum of a set of numbers ......................................................................................accum, expr, table
Sum of two numbers ................................................................................................ accum, expr, +
Suppress note-off messages .............................................................................................. stripnote
Suppress the flow of certain messages...................... gate, Ggate, Gswitch, mousefilter, select, switch
Sustain notes by holding note-off messages until a specific event occurs .............................sustain
Sustain pedal .................................................................................................... ctlin, ctlout, sustain
Switch a process on and off.................................................................led, TogEdge, toggle, ubutton
Switch control matrix .....................................................................................................matrixcrtrl
Switch the flow of messages on or off .........................................gate, Ggate, Gswitch, switch, toggle
Symbol to message conversion .....................................................................................fromsymbol
Synchronize asynchronously arriving inputs, send them out together .................................. buddy
Synchronize Max to an external clock source ......................................................... setclock, timein
System exclusive messages, construct and transmit.............................................. midiout, sxformat
System exclusive messages, receive............................................................................midiin, sysexin
System Reset, MIDI system message.................................................................midiin, midiout, rtin
Tag messages with a unique index number .........................................................Borax, funnel, poly
Tangent function .......................................................................................................................tan
Tempo, control clock speed of Max timing objects .............................................................setclock
Tempo, send out beat numbers at a metronomic tempo........................................................tempo
Test the equality of two numbers ....................................................change, if, match, select, ==, !=
Test the zero/non-zero status of a number or expressionchange, if, led, match, select, split, TogEdge, 

toggle, ==, !=, &&, ||
Test whether one number is greater than another......................maximum, number box, Peak, >, >=
Test whether one number is less than another........................ minimum, number box, Trough, <, <=
Text file, load, play, and save a MIDI file as plain text..................................................................seq
Text file, open and save ............................................................................................................ Text
Text input by the user, obtain..................................................................................dialog, message
Text, convert to ASCII numbers...............................................................................................spell
Text, display automatically in a patcher....................... dialog, lcd, umenu, message, pcontrol, sprintf
Text, display in a patcher............................................................................. comment, fpic, message
Text, format numbers, ASCII bytes, and symbols into a single message ................................sprintf
 508



Object Thesaurus Objects listed
by task keyword
Text, print any message in the Max window............................................................................ print
Threshold, report when numbers surpass................................................................................ past
Timbre change on a MIDI synthesizer................................................................................pgmout
Time code, generate time information to send to other applications in MIDI Manager ......timeout
Time code, receive from an external source ............................................................ setclock, timein
Time elapsed between events, check .................................................................. clocker, date, timer
Time of day and date ...............................................................................................................date
Timeline of Max messages to be sent to specific objects at specific times ........................... timeline
Timeline, control a timeline track from its own action patch ............................................ thisTrack
Timeline, control from one of its own action patches........................... thisTimeline, thisTrack, tiOut
Timeline, receive events (messages) from ..............................................................................tiCmd
Timeline, report the current time of............................................................................. thisTimeline
Timeline, send messages out one of the outlets of a timeline object ......................................... tiOut
Times, multiply two numbers ....................................................................................accum, expr, *
Toggle a process on and off .................................................................led, TogEdge, toggle, ubutton
Track, control a timeline track from its own action patch.................................................. thisTrack
Track, record and play back a multi-track sequence of messages or numbers............................ mtr
Traffic control for bang messages ........................................................................................onebang
Transform a symbol into individual numbers or messages ...........................................fromsymbol
Transition probabilities, Markov chain ....................................................................................prob
Transmit a specific type of MIDI message ........bendout, ctlout, noteout, pgmout, polyout, touchout
Transmit MIDI data byte by byte........................................................................................midiout
Trap and redirect the output of an object .................................................................................grab
Trap computer keyboard events.........................................................................key, keyup, numkey
Trap mouse events .......................................................................................imovie, lcd, MouseState
Trap occurrences of a specific ordered set of numbers .......................................................... match
Trap occurrences of specific numbers..............................................follow, match, route, select, ==
Trap occurrences of specific symbols........................................................................... route, select
Trigger a process by sending the bang message ....................................... button, loadbang, ubutton
Trigger events automatically when a patch is loaded .........................................................loadbang
Trigger events based on notes played by the user..............................follow, match, route, select, ==
Trigonometric functions .........................................................................................................expr
True/false testing ...........................if, led, match, select, split, TogEdge, toggle, ==, !=, <, >, <=, >=
Type numerical data into a patcher .................................................................number box, numkey
Type text into a locked patcher ...............................................................................dialog, message
Variable for storing a floating-point number (with a fractional part).....float, number box, pv, value
Variable for storing an integer value ......................................................... int, number box, pv, value
Variable for storing any message ........................................................................................pv, value
Variable that is private to a single patcher and its subpatches.......................................................pv
Vector math, evaluate an expression multiple times using lists of numbers as input ............... vexpr
Velocity of incoming MIDI note-on messages, obtain ..........................................midiparse, notein
Velocity, detecting and formatting note-off messages with release velocity .......... xnotein, xnoteout
Video or film, synchronize Max to.......................................................................... setclock, timein
Videodisc player ....................................................................................................................... vdp
Videodisc player, control via the serial port..................................................................... serial, vdp
Virtual connection of objects, without patch cords..... float, forward, grab, int, message, pv, receive, 
509 



Object Thesaurus  Objects listed
by task keyword
send, value
Voice number, assign a unique number to each note being played ................................. Borax, poly
Voice stealing, turn off old notes if too many new ones arrive .................................................. poly
Volume control MIDI message ......................................................................................ctlin, ctlout
Volume control of a QuickTime movie ............................................................................... playbar
Wait before allowing a number to pass...........................................................pipe, speedlim, thresh
Wait before doing something..................................................................................................delay
Wait for input in both inlets, then send out both numbers .................................................... buddy
Weighted probabilities..................................................................... drunk, expr, random, table, urn
Window being closed sends a bang .................................................................................closebang
Window for displaying graphic shapes and pictures ............................................................graphic
Window moving to foreground or background sends 1 or 0..................................................active
Window on a subpatch seen within the patcher that contains that subpatch ..................... bpatcher
Window, enable or disable MIDI automatically ................................................................. pcontrol
Window, open and close automatically............................................................pcontrol, thispatcher
Windows, communicate between float, forward, grab, inlet, int,message, outlet, receive, send, value
XOR, bitwise "exclusive or" operation ..................................................................................... expr
Zero and non-zero numbers, notify when input changes from one to the other.....change, TogEdge
Zero, test if a number or expression is equal to.. change, if, led, select, split, TogEdge, toggle, ==, !=, 

&&, ||
 510



Index

Symbols
!- 4, 9
- 9, 11
!/ 6, 9
!= 8, 9
$

in a message box 226
in an object box 130, 179

% 9, 17
< 9, 18 
<= 19
& 9, 23
&& 9, 24
* 9, 13
+ 9
/ 9, 15
== 9, 20
> 9, 21, 43
>= 9, 21, 22
<< 27
>> 9, 28
\ 227
| 9, 25
|| 9, 26

A
abs 29
absolute value 29
absolutepath 30
accum 32
acos 31
action, timeline 429, 430, 442, 447
active 34
active window 34
add, + 9
address

of a table 405
aftertouch

touchin 451
touchout 453

aftertouch, polyphonic
polyin 330
polyout 332

anal 35
and 9, 24
append 36

received in a message object 226
Apple CD ROM driver 64
appledvd 37
application status reporting 394
argument

as a receiver of a message 227
changeable argument 227

argument, changeable 295
arithmetic operators

- 11
!- 4
!/ 6
% 17
* 13
+ 9
/ 15

array 405
funbuff 157
offer 270

ASCII 189, 191, 268, 383, 388
asin 41
Assistance

assigned to an inlet object 184
assigned to an outlet object 283

associating a symbol with a number 74
atan 42
atan2 43

B
backslash 227
bag 44
bang 60, 229

produced by clicking on a picture 459
received in a table 405
send to many places, in order 46
time elapsed between 446
when a window is closed 73

bang message
traffic control 279

bangbang 46
beats per minute 413
bendin 47
bendout 49
bits 376
bitwise and 9, 23
bitwise operators
511   



Index

 27
& 23
>> 28
| 25

bitwise or 9, 25
bold type, displaying numbers in 265
bondo 51
Borax 52
bpatcher 54
broadcast a message everwhere 466
Bucket 57
buddy 59
button 60

transparent 459
buttons, user-created 307

C
C function 130
C programming language 130, 388
capture 61
cartopol 63
cd 64
change 67
changeable argument 227
channel mode message

ctlin 91
ctlout 93

channel pressure
touchin 451
touchout 453

check boxes 344
clip 69
clocker 71
closebang 73
coll 74

data format 76
Color Picker dialog 81
color selection

colorpicker 81
swatch 399

colored indicator, led 205
colorpicker 81
comma 227
comment 83

changing font and size 83
clicking on 460

comparison
both numbers are not zero 24
equal to 20
greater than 21
greater than or equal to 22
if/then/else 179
less than 18
less than or equal to 19
look for a number or symbol 357, 366,

392
look for a range of numbers 385
look for a series of numbers 212
not equal to 8
one or both numbers are not zero 26
report when numbers pass a threshold

291
the greater of two numbers 219
the greatest in a list of numbers 219
the lesser of two numbers 240
the smallest in a list of numbers 240

constant value 130
continuous controller names 271
control change

ctlin 91
ctlout 93

conversion of message type 455
coordinate conversion

Cartesian to Polar 63
Polar to Cartesian 327

cos 85
cosh 86
cosine wave 85
counter 87
ctlin 91
ctlout 93
cycle 95

D
data byte

system exclusive 402
data structure

coll 74
date 97
decide 98
decode 100
decrementing 87, 207
   512



Index

defer 102
delay 103
delaying

a bang 103
before sending a note-off 210
numbers 323, 431

delta count 52
delta time 52, 104, 249, 250, 446
detonate 104
dial 110
dialog 112
discrete values from a continuous stream 382
displaying messages 226
displaying numbers 264
divide, / 6, 9, 15
division of a beat 413
division, inlets reversed 6
dollar sign 227
drag-and-drop interfaces 114
dropfile 114
drunk 116
duration

reported by Borax 53
DVD Player 37

E
editing a sequence 250, 369
entering numbers from the keyboard 268
entering numbers in a Number box 264
env 118
envelope generator 118
envi 118
equal to 9, 20
error 129
evaluate item text of a pop-up menu 465
exponential curve 334
expr 130
extra precision pitch bend data 483, 484

F
file management

opendialog 281
report modification date 132
savedialog 363

file modification date 132
file/pathname management

absolutepath 30
filepath 135
relativepath 354
stripppath 391

filedate 132
filein 133
filepath 135
filtering a stream of numbers 241, 382
filtering MIDI messages 238
filtering out note-off messages 390
filtering out repetitions

of numbers 67
of zero/non-zero status 448

first-order Markov chain 340
float 137
floating point variable 137
flush 139
folder 141
follow 143
following a score 105
format

of an mtr file 250
formatting

MIDI messages 232
forward 146
fpic 147
fpic and QuickTIme 495
fquantile 405
fraction 6, 15, 268
frame 152
fromsymbol 154
fswap 155
funbuff 157
function, mathematical 130
funnel 160

G
gate 162
gestalt 164
getting system information

gestalt 164
screensize 365
suspend 394

Ggate 166
global variable 476
gotolink xbendin
513   



Index

firstpage 498, 500, 501, 503, 505

grab 167
granularity 375
graphic 169
graphics 169

in a Patcher window 196
graphics file format 147, 305
graphics window 169
greater than 21, 43
greater than or equal to 9, 21, 22, 43
greater than, > 9
grid-based interface controls 213
Gswitch 171

H
hexadecimal number

displaying 61
highlighting 459
hint 172
Histo 175
hslider 177

I
if 179
imovie 181
IncDec 183
incrementing 87, 175, 207
inlet object 184, 293
inlet, Assistance description 184
Inspector 379

bpatcher 54
coll 78
comment 83
dial 110
fpic 149
hint 172
hslider 177
inlet 184
kslider 194
lcd 201
led 205
matrixctrl 215
message 227
multiSlider 256
number box 265
outlet 283

panel 289
pictctrl 309
pictslider 318
preset 337
radiogroup 346
rslider 359
slider 379
table 408
textedit 418
ubutton 460
umenu 464
uslider 471

int 186
integer variable 186
inter-onset interval 104
interpolate between points 207
iter 188

K
key 189
key code 189, 191
keyboard commands 189, 191

entering numbers 264, 268
keyboard-like slider 193
keyup 191
knobs, user-created 307, 315
kslider 193

L
labeling 83
lcd 196
least significant byte, pitch bend 483, 484
led 205
left shift operator 9, 27
less than or equal to 9, 19
less than, 9, 18
limiting numbers to a specific range 17, 69,
385, 472
limiting the speed of a stream of numbers 382
line 207
list

combining numbers into 287, 431
convert to a series of numbers 188
separate numbers 467

list and symbol handling
fromsymbol 154
   514



Index

substitute 392
tosymbol 450
zl 490

list processing 490
list to symbol conversion 450
loadbang 209
loading a patch

send a bang when patch is loaded 209
logical and 24
logical or 26
loop 17

M
Mac OS Gestalt selector 164
magnifying glass tool 107
makenote 210
Markov chain 35, 340
masking 23, 25
match 212
mathematical operators

arc-cosine 31
arc-sine 41
arc-tangent 42
arc-tangent (2 variables) 43
cosine 85
hyperbolic cosine 86
hyperbolic sine 378
sine 377
tangent 411

matrix switch control 213
matrixctrl 213
matrixctrl and QuickTime 495
Max search path 135
Max Window

printing in 339
Max, messages to 375
maximum in a series of numbers 297
maximum number of presets 338
maximum object 219
mean 220
menu bar, changing 221
menu object 462
menubar object 221
message

append arguments at the end of 36, 226
displaying 226

maximum length of 227
prepend arguments to the beginning of

226
prepend one before another 335
reversing order of two numbers 155
routing to different destinations 162,

166, 357, 392
to Max 375

message object 226
$ argument 226

metro 229
MIDI

receiving and transmitting 234, 236
MIDI Enable/Disable 295
MIDI file 106, 144, 370
MIDI file format 106
midiflush 231
midiformat 232
midiin 234
midiout 236
midiparse 238
minimum in a series of numbers 457
minimum object 240
minus, - 4, 9, 11
modulo 17
modulo, % 9
monitor bounding coordinates 365
mouse status and location 241, 242
mousefilter 241
MouseState 242
movie 244
mtr 249
multiply, * 9, 13
multiSlider 253
multi-track MIDI file 106
multi-track sequencer 249, 441
muting notes in a MIDI file 106

N
n 83
next 259
not equal to 8, 9
note event recording 104
note names of a MIDI patch 275
notein 260
note-off message
515   



Index

filtering out 390
holding, then outputting 395
supplying 52, 139, 210, 328

note-off with release velocity
xnotein 486
xnoteout 488

note-on/note-off indicator to xnoteout 488
noteout 262
number

displaying 264
send to many places, in order 455
typing on the keyboard 268

number box 264
numkey 268

O
objects

storing settings of 336
that evaluate expressions 130

offer 270
OMS 273
OMS Timing 375, 437, 444
omscontrollers 271
omsinfo 273
omsnotes 275
omspatches 277
onebang 279
onecopy 280
open a dialog box 112, 281, 363
open a subpatch window 293
open and close a subpatch window 295, 421
Open Document dialog 281
opendialog 281
or 9, 26
outlet object 283, 293
outlet, Assistance description 283
oval 285
Overdrive, defer 102

P
p 293
pack 287
pairing numbers 59, 287, 388
pairing numbers, pairing lists, pairing floats,
pairing symbols 59
palette in detonate window 107

palette of graphic editing tools 408
panel 289
parsing MIDI messages 238
past 291
patch cord

send messages without 368
patch names of a MIDI device 277
patcher object 293
Patcher window

of a patcher object 293, 295
of a subpatch 295

pathname conversion
absolute to relative 354
relative to absolute 30
strippath 391

pcontrol 295
Peak 297
pgmin 299, 301
PICS file format 303
pics2 303
pict 305
pictctrl 307
pictctrl and QuickTime 495
pictslider 315
picture

clicking on 460
in a patch 147

picture controls 315
pipe 323
pitch bend

14-bit, xbendin 483
14-bit, xbendout 484
bendin 47, 91
bendout 49

play a recorded sequence
mtr 249
seq 369
with MIDI start message 361

play audio sample 114, 132, 135, 259, 354,
391
playbar 325
plus, + 9
Polar to Cartesian coordinate conversion 63,
327
polling mouse status and location 242
poltocar 327
   516



Index

poly 328
polyin 330
polyout 332
polyphonic key pressure

polyin 330
polyout 332

pop-up hint text 172
pop-up menu 462
port

getting OMS device names 273
pow 334
Preferences file, setting search path 135
prepend 335

received in a message object 226
preset 336
print 339
prob 340
probability 35, 175, 348
program change

pgmin 299

Q
quantile 176, 406
QuickTime 244
QuickTime and graphics file formats 495
QuickTime movie 181, 246
QuickTime movie play controller 325

R
r 350
radio buttons 344
radiogroup 344
ramp of number values 207
random number

decide 98
drunk 116, 129
unique choice of 469

real time
rtin 361

receive 350
used with grab 167

receiving MIDI 234
recording a sequence of messages 249
recording a sequence of MIDI messages 369
recording note events 104
relational operators

 18, 19
!= 8
== 20
> 21
>= 22

relativepath 354
remainder 17
repeat actions 229, 474
right shift operator 9, 28
right-to-left

switching the order 46, 155, 455
ring 355
route 357, 392
routing

a range of numbers 385
messages to different destinations 162,

166, 357, 392
rslider 359
rtin 361

S
s 368
sample, read single 114, 132, 135, 259, 354,
391
save a file as text 61
Save As dialog box

savedialog object 363
savedialog 363
score of MIDI notes 104
score-following 105
score-reading object 143
screen bounding coordinates 365
screensize 365
script of a menubar object 221

example script 224
script of an env object 119

example script 124
scripting

changing object properties 425
connecting objects 424
creating objects 423
deleting objects 423
disconnecting objects 424
moving objects 427
naming objects 423
sending messages to object 426
517   



Index

scripting messages 422
scrolling display of number values 254
searching a CD 64
seed for random generator 98, 116, 348, 469
sel 366
select 366
selecting colors

HSV 81
RGB 81
web-safe 81

semicolon 227
send 368
seq 369

stopping output 231
sequencing

editing a sequence 250, 369
multi-track 249
note events 104
saving a sequence 250, 369
single track 369

serial 372
serial port 372
set

received in a message object 226
setclock 374
setting search path for files 135
settings of objects, storing 336
shift operator 27, 28
sin 377
sinh 378
slider 379
sliders, user-created 315
SMPTE time code 437, 444
special character 148, 227, 246
speedlim 382
spell 383
split 385
spray 387
sprintf 388
standard MIDI file 106
status byte

system exclusive 402
stealing voices 328
storing

messages 74
settings of objects 336

stripnote 390
strippath 391
stuck notes, avoiding 52, 139, 210, 231, 328
subpatch 54, 293

opening the window of 293, 295, 421
subtract 4, 11
subtraction, inlets reversed 4
sustain 395
swatch 399
switch 397, 401
switches, user created 307
sxformat 402
symbol

received in a message object 226
symbol and list handling

fromsymbol 154
substitute 392
tosymbol 450
zl 490

symbol to list conversion 154
synchronizing 361
synchronous messages 59
sysexin 404
system exclusive

end byte 402
status byte 402
sysexin 404

system exclusive programming 402

T
table 405

Don’t Save 409
entering values as text 408
Save with Patcher 409
size of 407

tan 411
tanh 412
tempo 413
Text 415
textedit 417
thispatcher 421
thisTimeline 429
thisTrack 430
thresh 431
threshold

numbers received within 431
   518



Index

when numbers go beyond 291

ticks 375, 437
tiCmd 433
time code formats 437, 444
time elapsed between events 52, 71, 97, 446
time of day 97
timed repetition 229
timein 437
timeline editor window 441
timeline object 440
timeout 444
timer 446
times, * 13
timing from OMS 375, 437, 444
tiOut 447
title bar hidden 422
TogEdge 448
toggle 449
toggling 100, 171, 205, 448, 449
tosymbol 450
touchin 451
touchout 453
track in a timeline 430
transmitting MIDI 236
transparent button 459
trap a number or symbol 357, 366, 392
trigger 455
Trough 457
type of message

conversion 455

U
ubutton 459
universal 394, 466
universal patcher messages 466
unpack 467
urn 469
USB ports and the serial object 372
uslider 471
Uzi 474

V
v 476
value 476
variable, global 476
vdp 477

vexpr 481
videodisc control 477
voice allocation

Borax 52
poly 328

voice stealing 328

W
wild card 212
window

opening and closing automatically 295,
421

window size 422
wrench tool 107

X
xbendin 483
xnotein 486
xnoteout 488

Z
zl 490
519   


	Copyright and Trademark Notices
	Credits
	Manual Conventions
	Reading the manual online
	!-
	!/
	!=
	+
	-
	*
	/
	%
	<
	<=
	==
	>
	>=
	&
	&&
	|
	||
	<<
	>>
	abs
	absolutepath
	acos
	accum
	active
	anal
	append
	appledvd
	asin
	atan
	atan2
	bag
	bangbang / b
	bendin
	bendout
	bondo
	Borax
	bpatcher
	Bucket
	buddy
	button
	capture
	cartopol
	cd
	change
	clip
	clocker
	closebang
	coll
	colorpicker
	comment
	cos
	cosh
	counter
	ctlin
	ctlout
	cycle
	date
	decide
	Decode
	defer
	delay / del
	detonate
	dial
	dialog
	dropfile
	drunk
	env
	envi
	error
	expr
	filedate
	filein
	filepath
	float / f
	flush
	folder
	follow
	forward
	fpic
	frame
	fromsymbol
	fswap
	funbuff
	funnel
	gate
	gestalt
	Ggate
	grab
	graphic
	Gswitch
	hint
	Histo
	hslider
	if
	imovie
	IndDec
	inlet
	int / i
	iter
	key
	keyup
	kslider
	lcd
	led
	line
	loadbang
	makenote
	match
	matrixctrl
	maximum
	mean
	menubar
	message
	metro
	midiflush
	midiformat
	midiin
	midiout
	midiparse
	minimum
	mousefilter
	MouseState
	movie
	mtr
	multiSlider
	next
	notein
	noteout
	number box
	numkey
	offer
	omscontrollers
	omsinfo
	omsnotes
	omspatches
	onebang
	onecopy
	opendialog
	outlet
	oval
	pack
	panel
	past
	patcher / p
	pcontrol
	Peak
	pgmin
	pgmout
	pics
	pict
	pictctrl
	pictslider
	pipe
	playbar
	poltocar
	poly
	polyin
	polyout
	pow
	prepend
	preset
	print
	prob
	pv
	radiogroup
	random
	receive / r
	rect
	relativepath
	ring
	route
	rslider
	rtin
	savedialog
	screensize
	select / sel
	send / s
	seq
	serial
	setclock
	sin
	sinh
	slider
	speedlim
	spell
	split
	spray
	sprintf
	stripnote
	strippath
	substitute
	suspend
	sustain
	swap
	swatch
	switch
	sxformat
	sysexin
	table
	tan
	tanh
	tempo
	Text
	textedit
	thispatcher
	thisTimeline
	thisTrack
	thresh
	tiCmd
	timein
	timeline
	timeout
	timer
	tiOut
	TogEdge
	toggle
	tosymbol
	touchin
	touchout
	trigger / t
	Trough
	ubutton
	umenu
	universal
	unpack
	urn
	uslider
	Uzi
	value / v
	vdp
	vexpr
	xbendin
	xbendout
	xnotein
	xnoteout
	zl
	Appendix: Quicktime & Graphics Formats
	Max Object Thesaurus
	Index

