
Revision 1.1, June 1998
Written by Christopher Dobrian

Assistant Professor and Director of the Electronic Music Studio
Music Department, School of the Arts

University of California, Irvine

MSP © 1997 David Zicarelli—All rights reserved
based on Pd by Miller Puckette

© 1997 The Regents of the University of California
MSP and Pd are based on ideas in Max/FTS,

an advanced DSP platform © IRCAM. Used by permission.

Cycling '74
1186 Folsom Street
San Francisco, CA 94103 USA
(415) 621-5743
fax (415) 621-6563
info@cycling74.com
http://www.cycling74.com



Table of Contents 

Introduction.............................................................................4
PowerPC signal processing in Max .....................................................4
How the MSP documentation is organized........................................... 6
Reading the manual online................................................................. 6

Digital Audio ............................................................................8
Sound ...........................................................................................8
Digital representation of sound ..........................................................15
Limitations of digital audio............................................................... 17
Advantages of digital audio............................................................... 21

How MSP Works.......................................................................23
Max patches and the MSP “signal network” ...........................................23
Audio rate and control rate ................................................................23
The link between Max and MSP ..........................................................24
Limitations of MSP .........................................................................26
Advantages of MSP .........................................................................27

Tutorial...................................................................................28
Introduction ...................................................................................28
Fundamentals .................................................................................30

1. Test tone .............................................................................. 30
2. Adjustable oscillator.................................................................34
3. Wavetable oscillator.................................................................38
4. Routing signals...................................................................... 43
5. Turning signals on and off.........................................................51
6. Review .................................................................................58

Synthesis.......................................................................................63
7. Additive synthesis ..................................................................63
8. Tremolo and ring modulation.................................................... 67
9. Amplitude modulation .............................................................71
10. Vibrato and FM ....................................................................74
11. Freqeuency modulation.......................................................... 76
12. Waveshaping .......................................................................80

Sampling ...................................................................................... 84
13. Recording and playback ..........................................................84
14. Playback with loops ...............................................................88
15. Variable-length wavetable....................................................... 90
16. Record and play sound files ..................................................... 95
17. Review................................................................................99

MIDI control..................................................................................103
18. Mapping MIDI to MSP ..........................................................103
19. Synthesizer ......................................................................... 108
20. Sampler.............................................................................. 114
21. Panning ..............................................................................120

2 Table of Contents



Table of Contents 

Analysis ........................................................................................126
22. Viewing signal data............................................................... 126
23. Oscilloscope .........................................................................132
24. Using the FFT...................................................................... 135

Processing.....................................................................................141
25. Delay lines ...........................................................................141
26. Delay lines with feedback ........................................................144
27. Flange .................................................................................147
28. Chorus ...............................................................................151
29. Comb filter ......................................................................... 154

Audio Input and Output.............................................................159
Using the Sound Manager with MSP ...................................................163

The volume (the Sound Out level).................................................. 164
The sampling rate .......................................................................164
The Sound Input source ...............................................................164
The Sound Output destination.......................................................165
Adjusting input-output delay ........................................................166

Using audio interface cards ...............................................................167
The audiodrivers folder ...............................................................167
INITs for audio cards ..................................................................169
Changing audio settings.............................................................. 169
Using more than two audio channels.............................................. 169

Notes on specific audio cards .............................................................170
Digidesign Audiomedia II............................................................170
Digidesign Audiomedia III, ProTools, and d24.................................170
Lucid PCI24 ..............................................................................171
Sonorus StudI/O ....................................................................... 172
Korg 1212I/O........................................................................... 174

Objects....................................................................................177

Messages to dsp......................................................................290

MSP Object Thesaurus...............................................................291

Index ......................................................................................294

Table of Contents 3



Introduction What is MSP? 

PowerPC signal processing in Max

MSP gives you over sixty Max objects with which to build your own synthesizers,
samplers, and effects processors as software instruments that perform audio signal
processing in your PowerPC.

A filter and delay effect processor in MSP

As you know, Max enables you to design your own programs for controlling MIDI
synthesizers, samplers, and effects processors.

MIDI control with Max

4 Introduction



What is MSP? Introduction 

With the addition of the MSP objects, you can also create your own digital audio device
designs—your own computer music instruments—and incorporate them directly into your
Max programs. You can specify exactly how you want your instruments to respond to MIDI
control, and you can implement the entire system in a Max patch.

MIDI control of a parameter of an audio process

MSP objects are connected together by patch cords in the same way as Max objects. These
connected MSP objects form a signal network which describes a scheme for the production
and modification of digital audio signals. (This signal network is roughly comparable to the
instrument definition familiar to users of Music N sound synthesis languages such as
Csound.) The audio signals are played through the audio output jack of the Power PC (using
the Sound Manager in the Mac OS) or through an installed sound card such as the
Digidesign Audiomedia III.

Signal network for an FM instrument

Introduction 5



Introduction About the Documentation

How the MSP documentation is organized

The organization of the MSP manual is similar to that of the Max manual. It consists of
introductory and background material, a substantial number of tutorials, and a reference
section.

Digital Audio explains how computers represent sound. Reading this chapter may be helpful
if MSP is your first exposure to digital manipulation of audio. If you already have a lot of
experience in this area, you can probably skip this chapter.

How MSP Works  provides an overview of the ideas behind MSP and how the software is
integrated into the Max environment. Unless you’re familiar with Max/FTS from IRCAM,
this chapter will provide essential information.

The MSP Tutorial accompanies the Max patches found in the MSP Tutorial folder. You’ll
read each chapter as you try out the examples in the patches. We recommend that everyone
work through the tutorials, regardless of background. MSP is a deep and complex system
and requires some thought and effort to learn. Let the tutorials help you in this process. The
other reference materials in the manual provide the facts about MSP, but they do not provide
the necessary context for understanding the program in the way that the tutorial does.

Audio Input and Output describes MSP’s support for the Macintosh Sound Manager and
audio-interface cards. There is a lot of detail about audio interface cards that you can skip if
you don’t have one. You’ll also want to read this chapter to learn how you can tweak MSP’s
performance.

MSP Objects includes a page or two describing the capabilities of each object, along with a
Max patch or excerpt that illustrates one use of the object. Some of the more obscure objects
are not covered in the tutorials; you’ll need to read about them here.

Messages to dsp lists the messages you can send to the dsp object to access low-level features
of MSP. This section will be of interest only to advanced users.

The MSP Object Thesaurus matches the subject and typical uses of MSP objects with the
object name. For example, if you are interested in sample playback but do not know which
MSP object does it, you could look up “Sample playback” to find the six(!) objects that deal
with this topic.

Reading the manual online

The MSP manual takes advantage of a couple of features in Adobe Acrobat Reader. The table
of contents is bookmarked, so you can view the bookmarks and jump to any topic listed by
clicking on its names. To view the bookmarks, click on the icon that looks like this:

6 Introduction



About the Documentation Introduction 

Click on the triangle next to each section to expand it.

Instead of using the Index at the end of the manual, it might be easier to use Acrobat Reader’s
Find command. Choose Find from the Tools menu, then type in a word you’re looking for.
Find  will highlight the first instance of the word, and Find Again  takes you to subsequent
instances.

We’d like to take this opportunity to discourage you from printing out the manual unless
you find it absolutely necessary.

Other Resources for MSP Users

The help files found in the msp help folder provide interactive examples of the use of each
MSP object.

The MSP Examples folder contains a number of interesting and amusing demonstrations of
what can be done with MSP.

The Support page at www.cycling74.com provides new, updated, and unsupported MSP
objects. In addition you’ll find updates to audiodrivers and miscellaneous other files. MSP
users can contribute objects, examples, and information here.

The Max internet mailing list is the best source of assistance, news, and information about
Max and all its applications, including signal processing. For information on how to
subscribe, see the Support page at http://www.cycling74.com/support.

Finally, if you’re having trouble with the operation of MSP, send e-mail to
support@cycling74.com, and we’ll try to help you. We’d like to encourage you to send
questions of a more conceptual nature (“how do I...?”) to the Max internet mailing list, so
that the entire community can provide input and benefit from the discussion.

Introduction 7



Digital Audio Sound

A thorough explanation of how digital audio works is well beyond the scope of this manual.
What follows is a very brief explanation that will give you the minimum understanding
necessary to use MSP successfully.

For a more complete explanation of how digital audio works, we recommend The Computer
Music Tutorial by Curtis Roads, published in 1996 by the MIT Press. It also includes the
most extensive bibliography on the subject.

Sound

Simple harmonic motion

The sounds we hear are fluctuations in air pressure—tiny variations from normal
atmospheric pressure—caused by vibrating objects. (Well, technically it could be water
pressure if you’re listening underwater, but please keep your computer out of the swimming
pool.)

As an object moves, it displaces air molecules next to it, which in turn displace air molecules
next to them, and so on, resulting in a momentary “high pressure front” that travels away
from the moving object (toward your ears). So, if we cause an object to vibrate—we strike a
tuning fork, for example—and then measure the air pressure at some nearby point with a
microphone, the microphone will detect a slight rise in air pressure as the “high pressure
front” moves by. Since the tine of the tuning fork is fairly rigid and is fixed at one end, there
is a restoring force pulling it back to its normal position, and because this restoring force
gives it momentum it overshoots its normal position, moves to the opposite extreme
position, and continues vibrating back and forth in this manner until it eventually loses
momentum and comes to rest in its normal position. As a result, our microphone detects a
rise in pressure, followed by a drop in pressure, followed by a rise in pressure, and so on,
corresponding to the back and forth vibrations of the tine of the tuning fork.

If we were to draw a graph of the change in air pressure detected by the microphone over
time, we would see a sinusoidal shape (a sine wave) rising and falling, corresponding to the
back and forth vibrations of the tuning fork.

Sinusoidal change in air pressure caused by a simple vibration back and forth

8 Digital Audio



Sound Digital Audio 

This continuous rise and fall in pressure creates a wave of sound. The amount of change in
air pressure, with respect to normal atmospheric pressure, is called the wave’s amplitude
(literally, its “bigness”). We most commonly use the term “amplitude” to refer to the peak
amplitude, the greatest change in pressure achieved by the wave.

This type of simple back and forth motion (seen also in the swing of a pendulum) is called
simple harmonic motion. It’s considered the simplest form of vibration because the object
completes one full back-and-forth cycle at a constant rate. Even though its velocity changes
when it slows down to change direction and then gains speed in the other direction—as
shown by the curve of the sine wave—its average velocity from one cycle to the next is the
same. Each complete vibratory cycle therefore occurs in an equal interval of time (in a given
period of time), so the wave is said to be periodic. The number of cycles that occur in one
second is referred to as the frequency of the vibration. For example, if the tine of the tuning
fork goes back and forth 440 times per second, its frequency is 440 cycles per second, and
its period is 1/440 second per cycle.

In order for us to hear such fluctuations of pressure:

• The fluctuations must be substantial enough to affect our timpanic membrane
(eardrum), yet not so substantial as to hurt us. In practice, the intensity of the
changes in air pressure must be greater than about 10-9  times atmospheric pressure,
but not greater than about 10-3  times atmospheric pressure. You’ll never actually
need that information, but there it is. It means that the softest sound we can hear has
about one millionth the intensity of the loudest sound we can bear. That’s quite a
wide range of possibilities.

• The fluctuations must repeat at a regular rate fast enough for us to perceive them as a
sound (rather than as individual events), yet not so fast that it exceeds our ability to
hear it. Textbooks usually present this range of audible frequencies as 20 to 20,000
cycles per second (cps, also known as hertz, abbreviated Hz). Your own mileage may
vary. If you are approaching middle age or have listened to too much loud music,
you may top out at about 17,000 Hz or even lower.

Complex tones

An object that vibrates in simple harmonic motion is said to have a resonant mode of
vibration—a frequency at which it will naturally tend to vibrate when set in motion.
However, most real-world objects have several resonant modes of vibration, and thus
vibrate at many frequencies at once. Any sound that contains more than a single frequency
(that is, any sound that is not a simple sine wave) is called a complex tone. Let’s take a
stretched guitar string as an example.

A guitar string has a uniform mass across its entire length, has a known length since it is
fixed at both ends (at the “nut” and at the “bridge”), and has a given tension depending on
how tightly it is tuned with the tuning peg. Because the string is fixed at both ends, it must
always be stationary at those points, so it naturally vibrates most widely at its center.

Digital Audio 9



Digital Audio Sound

A plucked string vibrating in its fundamental resonant mode

The frequency at which it vibrates depends on its mass, its tension, and its length. These
traits stay fairly constant over the course of a note, so it has one fundamental frequency at
which it vibrates. However, other modes of vibration are still possible.

Some other resonant modes of a stretched string

The possible modes of vibration are constrained by the fact that the string must remain
stationary at each end. This limits its modes of resonance to integer divisions of its length.

This mode of resonance would be impossible because the string is fixed at each end

Because the tension and mass are set, integer divisions of the string’s length result in integer
multiples of the fundamental frequency.

10 Digital Audio



Sound Digital Audio 

  F

 2F

 3F

 4F

Each resonant mode results in a different frequency

In fact, a plucked string will vibrate in all of these possible resonant modes simultaneously,
creating energy at all of the corresponding frequencies. Of course, each mode of vibration
(and thus each frequency) will have a different amplitude. (In the example of the guitar
string, the longer segments of string have more freedom to vibrate.) The resulting tone will
be the sum of all of these frequencies, each with its own amplitude.

As the string’s vibrations die away due to the damping force of the fixture at each end, each
frequency may die away at a different rate. In fact, in many sounds the amplitudes of the
different component frequencies may vary quite separately and differently from each other.
This variety seems to be one of the fundamental factors in our perception of sounds as
having different tone color (i.e., timbre), and the timbre of even a single note may change
drastically over the course of the note.

Harmonic tones

The combination of frequencies—and their amplitudes—that are present in a sound is called
its spectrum (just as different frequencies and intensities of light constitute a color
spectrum). Each individual frequency that goes into the makeup of a complex tone is called a
partial. (It’s one part of the whole tone.)

When the partials (component frequencies) in a complex tone are all integer multiples of the
same fundamental frequency, as in our example of a guitar string, the sound is said to have a
harmonic spectrum. Each component of a harmonic spectrum is called a harmonic partial, or
simply a harmonic. The sum of all those harmonically related frequencies still results in a
periodic wave having the fundamental frequency. The integer multiple frequencies thus fuse
“harmoniously” into a single tone.

Digital Audio 11



Digital Audio Sound

The sum of harmonically related frequencies still repeats at the fundamental frequency

This fusion is supported by the famous mathematical theorem of Jean-Baptiste Joseph
Fourier, which states that any periodic wave, no matter how complex, can be demonstrated
to be the sum of different harmonically related frequencies (sinusoidal waves), each having
its own amplitude and phase. (Phase is an offset in time by some fraction of a cycle.)

Harmonically related frequencies outline a particular set of related pitches in our musical
perception.

Harmonic partials of a fundamental frequency ƒ, where ƒ = 65.4 Hz = the pitch low C

Each time the fundamental frequency is multiplied by a power of 2—2, 4, 8, 16, etc.—the
perceived musical pitch increases by one octave. All cultures seem to share the perception
that there is a certain “sameness” of pitch class between such octave-related frequencies. The
other integer multiples of the fundamental yield new musical pitches. Whenever you’re
hearing a harmonic complex tone, you’re actually hearing a chord! As we’ve seen, though,
the combined result repeats at the fundamental frequency, so we tend to fuse these
frequencies together such that we perceive a single pitch.

Inharmonic tones and noise

Some objects—such as a bell, for instance—vibrate in even more complex ways, with many
different modes of vibrations which may not produce a harmonically related set of partials. If
the frequencies present in a tone are not integer multiples of a single fundamental frequency,
the wave does not repeat periodically. Therefore, an inharmonic set of partials does not fuse
together so easily in our perception. We may be able to pick out the individual partials more
readily, and—especially when the partials are many and are completely inharmonic—we may
not perceive the tone as having a single discernible fundamental pitch.

12 Digital Audio



Sound Digital Audio 

When a tone is so complex that it contains very many different frequencies with no apparent
mathematical relationship, we perceive the sound as noise. A sound with many completely
random frequencies and amplitudes—essentially all frequencies present in equal
proportion—is the static-like sound known as white noise (analogous to white light which
contains all frequencies of light).

So, it may be useful to think of sounds as existing on a continuum from total purity and
predictability (a sine wave) to total randomness (white noise). Most sounds are between
these two extremes. An harmonic tone—a trumpet or a guitar note, for example—is on the
purer end of the continuum, while a cymbal crash is closer to the noisy end of the
continuum. Timpani and bells may be just sufficiently suggestive of a harmonic spectrum
that we can identify a fundamental pitch, yet they contain other inharmonic partials. Other
drums produce more of a band-limited noise—randomly related frequencies, but restricted
within a certain frequency range—giving a sense of pitch range, or non-specific pitch,
rather than an identifiable fundamental. It is important to keep this continuum in mind when
synthesizing sounds.

Amplitude envelope

Another important factor in the nearly infinite variety of sounds is the change in over-all
amplitude of a sound over the course of its duration. The shape of this macroscopic over-all
change in amplitude is termed the amplitude envelope. The initial portion of the sound, as
the amplitude envelope increases from silence to audibility, rising to its peak amplitude, is
known as the attack of the sound. The envelope, and especially the attack, of a sound are
important factors in our ability to distinguish, recognize, and compare sounds. We have
very little knowledge of how to read a graphic representation of a sound wave and hear the
sound in our head the way a good sightreader can do with musical notation. However, the
amplitude envelope can at least tell us about the general evolution of the loudness of the sound
over time.

The amplitude envelope is the evolution of a sound’s amplitude over time

Digital Audio 13



Digital Audio Sound

Amplitude and loudness

The relationship between the objectively measured amplitude of a sound and our subjective
impression of its loudness is very complicated and depends on many factors. Without
trying to explain all of those factors, we can at least point out that our sense of the relative
loudness of two sounds is related to the ratio of their intensities, rather than the
mathematical difference in their intensities. For example, on an arbitrary scale of
measurement, the relationship between a sound of amplitude 1 and a sound of amplitude 0.5
is the same to us as the relationship between a sound of amplitude 0.25 and a sound of
amplitude 0.125. The subtractive difference between amplitudes is 0.5 in the first case and
0.125 in the second case, but what concerns us perceptually is the ratio, which is 2:1 in both
cases.

Does a sound with twice as great an amplitude sound twice as loud to us? In general, the
answer is “no”. First of all, our subjective sense of “loudness” is not directly proportional to
amplitude. Experiments find that for most listeners, the (extremely subjective) sensation of
a sound being “twice as loud” requires a much greater than twofold increase in amplitude.
Furthermore, our sense of loudness varies considerably depending on the frequency of the
sounds being considered. We’re much more sensitive to frequencies in the range from
about 300 Hz to 7,000 Hz than we are to frequencies outside that range. (This might
possibly be due evolutionarily to the importance of hearing speech and many other
important sounds which lie mostly in that frequency range.)

Nevertheless, there is a correlation—even if not perfectly linear—between amplitude and
loudness, so it’s certainly informative to know the relative amplitude of two sounds. As
mentioned earlier, the softest sound we can hear has about one millionth the amplitude of the
loudest sound we can bear. Rather than discuss amplitude using such a wide range of
numbers from 0 to 1,000,000, it is more common to compare amplitudes on a logarithmic
scale.

The ratio between two amplitudes is commonly discussed in terms of decibels (abbreviated
dB). A level expressed in terms of decibels is a statement of a ratio relationship between two
values—not an absolute measurement. If we consider one amplitude as a reference which we
call A0, then the relative amplitude of another sound in decibels can be calculated with the
equation:

level in decibels = 20 log10 (A/A0)

If we consider the maximum possible amplitude as a reference with a numerical value of 1,
then a sound with amplitude 0.5 has 1/2 the amplitude (equal to 10-0.3) so its level is

20 log10 (0.5/1) ≈ 20 (-0.3) = -6 dB

Each halving of amplitude is a difference of about -6 dB; each doubling of amplitude is an
increase of about 6 dB. So, if one amplitude is 48 dB greater than another, one can estimate
that it’s about 28 (256) times as great.

14 Digital Audio



Sound Digital Audio 

Summary

A theoretical understanding of sine waves, harmonic tones, inharmonic complex tones, and
noise, as discussed here, is useful to understanding the nature of sound. However, most
sounds are actually complicated combinations of these theoretical descriptions, changing
from one instant to another. For example, a bowed string might include noise from the bow
scraping against the string, variations in amplitude due to variations in bow pressure and
speed, changes in the prominence of different frequencies due to bow position, changes in
amplitude and in the fundamental frequency (and all its harmonics) due to vibrato
movements in the left hand, etc. A drum note may be noisy but might evolve so as to have
emphases in certain regions of its spectrum that imply a harmonic tone, thus giving an
impression of fundamental pitch. Examination of existing sounds, and experimentation in
synthesizing new sounds, can give insight into how sounds are composed. The computer
provides that opportunity.

Digital representation of sound

Sampling and quantizing a sound wave

To understand how a computer represents sound, consider how a film represents motion. A
movie is made by taking still photos in rapid sequence at a constant rate, usually twenty-four
frames per second. When the photos are displayed in sequence at that same rate, it fools us
into thinking we are seeing continuous motion, even though we are actually seeing twenty-
four discrete images per second. Digital recording of sound works on the same principle.
We take many discrete samples of the sound wave’s instantaneous amplitude, store that
information, then later reproduce those amplitudes at the same rate to create the illusion of a
continuous wave.

The job of a microphone is to transduce (convert one form of energy into another) the
change in air pressure into an analogous change in electrical voltage. This continuously
changing voltage can then be sampled periodically by a process known as sample and hold. At
regularly spaced moments in time, the voltage at that instant is sampled and held constant
until the next sample is taken. This reduces the total amount of information to a certain
number of discrete voltages.

Time-varying voltage sampled periodically

A device known as an analog-to-digital converter (ADC) receives the discrete voltages from
the sample and hold device, and ascribes a numerical value to each amplitude. This process of
converting voltages to numbers is known as quantization. Those numbers are expressed in
the computer as a string of binary digits (1 or 0). The resulting binary numbers are stored

Digital Audio 15



Digital Audio Digital Representation of Sound

in memory —usually on a digital audio tape, a hard disk, or a laser disc. To play the sound
back, we read the numbers from memory, and deliver those numbers to a digital-to-analog
converter (DAC) at the same rate at which they were recorded. The DAC converts each
number to a voltage, and communicates those voltages to an amplifier to increase the
amplitude of the voltage.

 In order for a computer to represent sound accurately, many many samples must be taken
per second—many more than are necessary for filming a visual image. In fact, we need to
take more than twice as many samples as the highest frequency we wish to record. (For an
explanation of why this is so, see Limitations of Digital Audio on the next page.) If we want
to record frequencies as high as 20,000 Hz, we need to sample the sound at least 40,000
times per second. The standard for compact disc recordings (and for “CD-quality”
computer audio) is to take 44,100 samples per second for each channel of audio. The number
of samples taken per second is known as the sampling rate.

This means the computer can only accurately represent frequencies up to half the sampling
rate. Any frequencies in the sound that exceed half the sampling rate must be filtered out
before the sampling process takes place. This is accomplished by sending the electrical signal
through a low-pass filter which removes any frequencies above a certain threshold. Also,
when the digital signal (the stream of binary digits representing the quantized samples) is
sent to the DAC to be re-converted into a continuous electrical signal, the sound coming out
of the DAC will contain spurious high frequencies that were created by the sample and hold
process itself. (These are due to the “sharp edges” created by the discrete samples, as seen in
the above example.) Therefore, we need to send the output signal through a low-pass filter,
as well.

The digital recording and playback process, then, is a chain of operations, as represented in
the following diagram.

sound 
source microphone

low-pass 
filter

sample 
and hold

ADC 
(quantization) storage

recall 
storage DAC

low-pass 
filter amplifier speaker listener

Digital recording and playback process

16 Digital Audio



Advantages and Limitations Digital Audio 

Limitations of digital audio

Sampling rate and Nyquist rate

We’ve noted that it’s necessary to take at least twice as many samples as the highest
frequency we wish to record. This was proven by Harold Nyquist, and is known as the
Nyquist theorem. Stated another way, the computer can only accurately represent
frequencies up to half the sampling rate. One half the sampling rate is often referred to as the
Nyquist frequency or the Nyquist rate.

If we take, for example, 16,000 samples of an audio signal per second, we can only capture
frequencies up to 8,000 Hz. Any frequencies higher than the Nyquist rate are perceptually
“folded” back down into the range below the Nyquist frequency. So, if the sound we were
trying to sample contained energy at 9,000 Hz, the sampling process would misrepresent
that frequency as 7,000 Hz—a frequency that might not have been present at all in the
original sound. This effect is known as foldover or aliasing. The main problem with aliasing
is that it can add frequencies to the digitized sound that were not present in the original
sound, and unless we know the exact spectrum of the original sound there is no way to know
which frequencies truly belong in the digitized sound and which are the result of aliasing.
That’s why it’s essential to use the low-pass filter before the sample and hold process, to
remove any frequencies above the Nyquist frequency.

To understand why this aliasing phenomenon occurs, think back to the example of a film
camera, which shoots 24 frames per second. If we’re shooting a movie of a car, and the car
wheel spins at a rate greater than 12 revolutions per second, it’s exceeding half the “sampling
rate” of the camera. The wheel completes more than 1/2 revolution per frame. If, for example
it actually completes 18/24  of a revolution per frame, it will appear to be going backward at a
rate of 6 revolutions per second. In other words, if we don’t witness what happens between
samples, a 270° revolution of the wheel is indistinguishable from a -90° revolution. The
samples we obtain in the two cases are precisely the same.

For the camera, a revolution of 18/24  is no different from a revolution of -6/24

For audio sampling, the phenomenon is practically identical. Any frequency that exceeds the
Nyquist rate is indistinguishable from a negative frequency the same amount less than the
Nyquist rate. (And we do not distinguish perceptually between positive and negative
frequencies.) To the extent that a frequency exceeds the Nyquist rate, it is folded back down
from the Nyquist frequency by the same amount.

Digital Audio 17



Digital Audio Advantages and Limitations

For a demonstration, consider the next two examples. The following example shows a graph
of a 4,000 Hz cosine wave (energy only at 4,000 Hz) being sampled at a rate of 22,050 Hz.
22,050 Hz is half the CD sampling rate, and is an acceptable sampling rate for sounds that do
not have much energy in the top octave of our hearing range. In this case the sampling rate is
quite adequate because the maximum frequency we are trying to record is well below the
Nyquist frequency.

A 4,000 Hz cosine wave sampled at 22,050 Hz

Now consider the same 4,000 Hz cosine wave sampled at an inadequate rate, such as 6,000
Hz. The wave completes more than 1/2 cycle per sample, and the resulting samples are
indistinguishable from those that would be obtained from a 2,000 Hz cosine wave.

A 4,000 Hz cosine wave undersampled at 6,000 Hz

The simple lesson to be learned from the Nyquist theorem is that digital audio cannot
accurately represent any frequency greater than half the sampling rate. Any such frequency
will be misrepresented by being folded over into the range below half the sampling rate.

Precision of quantization

Each sample of an audio signal must be ascribed a numerical value to be stored in the
computer. The numerical value expresses the instantaneous amplitude of the signal at the
moment it was sampled. The range of the numbers must be sufficiently large to express
adequately the entire amplitude range of the sound being sampled.

The range of possible numbers used by a computer depends on the number of binary digits
(bits) used to store each number. A bit can have one of two possible values: either 1 or 0.
Two bits together can have one of four possible values: 00, 01, 10, or 11. As the number of
bits increases, the range of possible numbers they can express increases by a power of two.
Thus, a single byte (8 bits) of computer data can express one of 28 = 256 possible numbers.
If we use two bytes to express each number, we get a much greater range of possible values
because 216  = 65,536.

18 Digital Audio



Advantages and Limitations Digital Audio 

The number of bits used to represent the number in the computer is important because it
determines the resolution with which we can measure the amplitude of the signal. If we use
only one byte to represent each sample, then we must divide the entire range of possible
amplitudes of the signal into 256 parts since we have only 256 ways of describing the
amplitude.

Using one byte per sample, each sample can have one of only 256 different possible values

For example, if the amplitude of the electrical signal being sampled ranges from -10 volts to
+10 volts and we use one byte for each sample, each number does not represent a precise
voltage but rather a 0.078125 V portion of the total range. Any sample that falls within that
portion will be ascribed the same number. This means each numerical description of a
sample’s value could be off from its actual value by as much as 0.078125V—1/256 of the total
amplitude range. In practice each sample will be off by some random amount from 0 to 1/256

of the total amplitude range. The mean error will be 1/512 of the total range.

This is called quantization error. It is unavoidable, but it can be reduced to an acceptable level
by using more bits to represent each number. If we use two bytes per sample, the
quantization error will never be greater than 1/65,536 of the total amplitude range, and the
mean error will be 1/131,072.

Since the quantization error for each sample is usually random (sometimes a little to high,
sometimes a little too low), we generally hear the effect of quantization error as white noise.
This noise is not present in the original signal. It is added into the digital signal by the
imprecise nature of quantization. This is called quantization noise.

The ratio of the total amplitude range to the quantization error is called the signal-to-
quantization-noise-ratio (SQNR). This is the ratio of the maximum possible signal
amplitude to the average level quantization of the quantization noise, and is usually stated in
decibels.

As a rule of thumb, each bit of precision used in quantization adds 6 dB to the SQNR.
Therefore, sound quantized with 8-bit numerical precision will have a best case SQNR of
about 48 dB. This is adequate for cases where fidelity is not important, but is certainly not
desirable for music or other critical purposes. Sound sampled with 16-bit precision (“CD-
quality”) has a SQNR of 96 dB, which is quite good—much better than traditional tape
recording.

In short, the more bits used by the computer to store each sample, the better the potential
ratio of signal to noise.

Digital Audio 19



Digital Audio Advantages and Limitations

Memory and storage

We have seen that the standard sampling rate for high-fidelity audio is 44,100 samples per
second. We’ve also seen that 16 bits (2 bytes) are needed per sample to achieve a good
signal-to-noise ratio. With this information we can calculate the amount of data needed for
digital audio: 41,000 samples per second, times 2 bytes per sample, times 2 channels for
stereo, times 60 seconds per minute equals more than 10 megabytes of data per minute of
CD-quality audio.

For this quality of audio, a high-density floppy disk holds less than 8 seconds of sound, and a
100 MB Zip cartridge holds less than 10 minutes. Clearly, the memory and storage
requirements of digital audio are substantial. Fortunately, a compact disc holds over an hour
of stereo sound, and a computer hard disk of at least 1 gigabyte is standard for audio
recording and processing.

Clipping

If the amplitude of the incoming electrical signal exceeds the maximum amplitude that can be
expressed numerically, the digital signal will be a clipped-off version of the actual sound.

A signal that exceeds maximum amplitude will be clipped when it is quantized

The clipped sample will often sound quite different from the original. Sometimes this type of
clipping causes only a slight distortion of the sound that is heard as a change in timbre. More
often though, it sounds like a very unpleasant noise added to the sound. For this reason, it’s
very important to take precautions to avoid clipping. The amplitude of the electrical signal
should not exceed the maximum expected by the ADC.

It’s also possible to produce numbers in the computer that exceed the maximum expected by
the DAC. This will cause the sound that comes out of the DAC to be a clipped version of the
digital signal. Clipping by the DAC is just as bad as clipping by the ADC, so care must be
taken not to generate a digital signal that goes beyond the numerical range the DAC is
capable of handling.

20 Digital Audio



Advantages and Limitations Digital Audio 

Advantages of digital audio

Synthesizing digital audio

Since a digital representation of sound is just a list of numbers, any list of numbers can
theoretically be considered a digital representation of a sound. In order for a list of numbers
to be audible as sound, the numerical values must fluctuate up and down at an audio rate. We
can listen to any such list by sending the numbers to a DAC where they are converted to
voltages. This is the basis of computer sound synthesis. Any numbers we can generate with
a computer program, we can listen to as sound.

Many methods have been discovered for generating numbers that produce interesting
sounds. One method of producing sound is to write a program that repeatedly solves a
mathematical equation containing two variables. At each repetition, a steadily increasing
value is entered for one of the variables, representing the passage of time. The value of the
other variable when the equation is solved is used as the amplitude for each moment in time.
The output of the program is an amplitude that varies up and down over time.

For example, a sine wave can be produced by repeatedly solving the following algebraic
equation, using an increasing value for n:

y = A sin(2πƒn/R+ø)

where A  is the amplitude of the wave, ƒ is the frequency of the wave, n is the sample number
(0,1, 2,3, etc.), R is the sampling rate, and ø  is the phase. If we enter values for A, ƒ,and ø,
and repeatedly solve for y  while increasing the value of n, the value of y  (the output sample)
will vary sinusoidally.

A complex tone can be produced by adding sinusoids—a method known as additive
synthesis:

y = A1 sin(2πƒ1n/R+ø1) + A2 sin(2πƒ2n/R+ø2) + ...

This is an example of how a single algebraic expression can produce a sound. Naturally,
many other more complicated programs are possible. A few synthesis methods such as
additive synthesis, wavetable synthesis, frequency modulation, and waveshaping are
demonstrated in the MSP Tutorial.

Manipulating digital signals

Any sound in digital form—whether it was synthesized by the computer or was quantized
from a “real world” sound—is just a series of numbers. Any arithmetic operation performed
with those numbers becomes a form of audio processing.

For example, multiplication is equivalent to audio amplification. Multiplying each number in
a digital signal by 2 doubles the amplitude of the signal (increases it 6 dB). Multiplying each
number in a signal by some value between 0 and 1 reduces its amplitude.

Digital Audio 21



Digital Audio Advantages and Limitations

Addition is equivalent to audio mixing. Given two or more digital signals, a new signal can
be created by adding the first numbers from each signal, then the second numbers, then the
third numbers, and so on.

An echo can be created by recalling samples that occurred earlier and adding them to the
current samples. For example, whatever signal was sent out 1000 samples earlier could be
sent out again, combined with the current sample.

y = xn + A yn-1000

As a matter of fact, the effects that such operations can have on the shape of a signal (audio or
any other kind) are so many and varied that they comprise an entire branch of electrical
engineering called digital signal processing (DSP). DSP is concerned with the effects of
digital filters—formulae for modifying digital signals by combinations of delay,
multiplication, addition, and other numerical operations.

Summary

This chapter has described how the continuous phenomenon of sound can be captured and
faithfully reproduced as a series of numbers, and ultimately stored in computer memory as a
stream of binary digits. There are many benefits obtainable only by virtue of this digital
representation of sound: higher fidelity recording than was previously possible, synthesis of
new sounds by mathematical procedures, application of digital signal processing techniques
to audio signals, etc.

MSP provides a toolkit for exploring this range of possibilities. It integrates digital audio
recording, synthesis, and processing with the MIDI control and object-based programming
of Max.

22 Digital Audio



The Signal Network How MSP Works
Max patches and the MSP “signal network”

Max objects communicate by sending each other messages through patch cords. These
messages are sent at a specific moment, either in response to an action taken by the user (a
mouse click, a MIDI note played, etc.) or because the event was scheduled to occur (by
metro, delay, etc.).

MSP objects are connected by patch cords in a similar manner, but their inter-
communication is conceptually different. Rather than establishing a path for messages to be
sent, MSP connections establish a relationship between the connected objects, and that
relationship is used to calculate the audio information necessary at any particular instant.
This configuration of MSP objects is known as the signal network.

The following example illustrates the distinction between a Max patch in which messages are
sent versus a signal network in which an ongoing relationship is established.

Max messages occur at a specific instant; MSP objects are in constant communication

In the Max example on the left, the number box  doesn’t know about the number 0.75
stored in the float object. When the user clicks on the button, the float object sends out its
stored value. Only then does the number box  receive, display, and send out the number
0.75. In the MSP example on the right, however, each outlet that is connected as part of the
signal network is constantly contributing its current value to the equation. So, even without
any specific Max message being sent, the *~ object is receiving the output from the two sig~
objects, and any object connected to the outlet of *~ would be receiving the product 0.75.

Another way to think of a MSP signal network is as a portion of a patch that runs at a faster
(audio) rate than Max. Max, and you the user, can only directly affect that signal portion of
the patch every millisecond. What happens in between those millisecond intervals is
calculated and performed by MSP. If you think of a signal network in this way—as a very
fast patch—then it still makes sense to think of MSP objects as “sending” and “receiving”
messages (even though those messages are sent faster than Max can see them), so we will
continue to use standard Max terminology such as send, receive, input, and output for MSP
objects.

Audio rate and control rate

The basic—and smallest—unit of time for scheduling events in Max is the millisecond
(0.001 seconds). This rate—1000 times per second—is generally fast enough for any sort of
control one might want to exert over external devices such as synthesizers, or over visual
effects such as QuickTime movies.

How MSP Works 23



How MSP Works Audio and Control Rates

Digital audio, however, must be processed at a much faster rate—commonly 44,100 times
per second per channel of audio. The way MSP handles this is to calculate, on an ongoing
basis, all the numbers that will be needed to produce the next few milliseconds of audio.
These calculations are made by each object, based on the configuration of the signal network.

An oscillator (cycle~), and an amplifier (*~) controlled by another oscillator (phasor~)

In this example, a cosine waveform oscillator with a frequency of 2000 Hz (the cycle~
object) has its amplitude scaled (every sample is multiplied by some number in the *~ object)
then sent to the digital-to-analog converter (dac~). Over the course of each second, the
(sub-audio) sawtooth wave output of the phasor~ object sends a continuous ramp of
increasing values from 0 to 1. Those increasing numbers will be used as the right operand in
the *~ for each sample of the audio waveform, and the result will be that the 2000 Hz tone
will fade in linearly from silence to full amplitude each second. For each millisecond of audio,
MSP must produce about 44 sample values (assuming an audio sample rate of 44,100 Hz),
so for each sample it must look up the proper value in each oscillator and multiply those two
values to produce the output sample.

Even though many MSP objects accept input values expressed in milliseconds, they calculate
samples at an audio sampling rate. Max messages travel much more slowly, at what is often
referred to as a control rate. It is perhaps useful to think of there being effectively two
different rates of activity: the slower control rate of Max’s millisecond scheduler, and the
faster audio sample rate.

The link between Max and MSP

Some MSP objects exist specifically to provide a link between Max and MSP—and to
translate between the control rate and the audio rate. These objects (such as sig~ and line~)
take Max messages in their inlets, but their outlets connect to the signal network; or
conversely, some objects (such as snapshot~) connect to the signal network and can peek
(but only as frequently as once per millisecond) at the value(s) present at a particular point in
the signal network.

Supply a Max message to the signal network, or get a Max message from a signal

24 How MSP Works



Max and MSP How MSP Works
These objects are very important because they give Max, and you the user, direct control
over what goes on in the signal network.

User interface control over the signal’s amplitude

Some MSP object inlets accept both signal input and Max messages. They can be connected
as part of a signal network, and they can also receive instructions or modifications via Max
messages. For example the dac~ (digital-to-analog converter) object, for playing the audio
signal, can be turned on and off with the Max messages start and stop.

Some MSP objects can receive audio signals and Max messages in the same inlet

And the cycle~ (oscillator) object can receive its frequency as a Max float or int message, or
it can receive its frequency from another MSP object (although it can’t do both at the same
time).

Some MSP objects can receive either Max messages or signals for the same purpose

So you see that a Max patch (or subpatch) may contain both Max objects and MSP objects.
For clear organization, it is frequently useful to encapsulate an entire process, such as a signal
network, in a subpatch so that it can appear as a single object in another Max patch.

Encapsulation can clarify relationships in a Max patch

How MSP Works 25



How MSP Works Advantages and Limitations

Limitations of MSP

From the preceding discussion, it’s apparent that digital audio processing requires a lot  of
“number crunching”. The computer must produce tens of thousands of sample values per
second per channel of sound, and each sample may require many arithmetic calculations,
depending on the complexity of the signal network. And in order to produce realtime audio,
the samples must be calculated at least as fast as they are being played.

Realtime sound synthesis of this complexity on a general-purpose personal computer was
pretty much out of the question until the introduction of sufficiently fast processors such as
the PowerPC. Even with the PowerPC, though, this type of number crunching requires a
great deal of the processor’s attention. So it’s important to be aware that there are
limitations to how much your computer can do with MSP.

Unlike a MIDI synthesizer, in MSP you have the flexibility to design something that is too
complicated for your computer to calculate in real time. The result can be audio distortion, a
very unresponsive computer, or in extreme cases, crashes.

Because of the variation in processor performance between computers, and because of the
great variety of possible signal network configurations, it’s difficult to say precisely what
complexity of audio processing MSP can or cannot handle. Here are a few general principles:

• The faster your computer’s CPU, the better will be the performance of MSP. We
strongly recommend computers that use the PowerPC 604 or newer processors.
The PowerBook 5300 series is particularly ill-suited to run MSP, and is not
recommended.

• Allocating more RAM to the Max application will increase the available buffer
memory for MSP, which will allow it to handle more audio data.

• A fast hard drive and a fast SCSI connection will improve input/output of audio files.

• Turning off AppleTalk and other similar processes that may be making demands on
the processor’s time will improve MSP’s performance. Using File Sharing or other
network-intensive AppleTalk processes may freeze MSP when using the Sound
Manager, and at best, will cause clicks in the output. The freezing problem is
resolved in Max version 3.5.9, and the output click problem is resolved in the
version of System 8 that comes with Power Macintosh G3 computers, and in
System 8.1.

• Reducing the audio sampling rate will reduce how many numbers MSP has to
compute for a given amount of sound, thus improving its performance (although a
lower sampling rate will mean degradation of high frequency response). Controlling
the audio sampling rate is discussed in the Audio Input and Output chapter.

26 How MSP Works



Advantages and Limitations How MSP Works
When designing your MSP instruments, you should bear in mind that some objects require
more intensive computation than others. An object that performs only a few simple
arithmetic operations (such as sig~, line~, +~, -~, *~, or phasor~) is computationally
inexpensive. (However, /~ is much more expensive.) An object that looks up a number in a
function table and interpolates between values (such as cycle~) requires only a few
calculations, so it’s likewise not too expensive. The most expensive objects are those which
must perform many calculations per sample: filters (reson~, biquad~), spectral analyzers
(fft~, ifft~), and objects such as play~, groove~, comb~, and tapout~ when one of their
parameters is controlled by a continuous signal. Efficiency issues are discussed further in
the MSP Tutorial.

Advantages of MSP

The PowerPC is a general purpose computer, not a specially designed sound processing
computer such as a commercial sampler or synthesizer, so as a rule you can’t expect it to
perform quite to that level. However, for relatively simple instrument designs that meet
specific synthesis or processing needs you may have, or for experimenting with new audio
processing ideas, it is a very convenient instrument-building environment.

1.  Design an instrument to fit your needs. Even if you have a lot of audio equipment, it
probably cannot do every imaginable thing you need to do. When you need to accomplish a
specific task not readily available in your studio, you can design it yourself.

2.  Build an instrument and hear the results in real time. With non-realtime sound synthesis
programs you define an instrument that you think will sound the way you want, then
compile it and test the results, make some adjustments, recompile it, etc. With MSP you can
hear each change that you make to the instrument as you build it, making the process more
interactive.

3.  Establish the relationship between gestural control and audio result. With many
commercial instruments you can’t change parameters in real time, or you can do so only by
programming in a complex set of MIDI controls. With Max you can easily connect MIDI
data to the exact parameter you want to change in your MSP signal network, and you know
precisely what aspect of the sound you are controlling with MIDI.

4.  Integrate audio processing into your composition or performance programs. If your
musical work consists of devising automated composition programs or computer-assisted
performances in Max, now you can incorporate audio processing into those programs.
Need to do a hands-free crossfade between your voice and a pre-recorded sample at a
specific point in a performance? You can write a Max patch with MSP objects that does it for
you, triggered by a single MIDI message.

Some of these ideas are demonstrated in the MSP Tutorial.

How MSP Works 27



Tutorial Introduction

28 MSP Tutorial

Organization of the Tutorial

As with the Max Tutorial , the MSP Tutorial is organized as a progressive series of lessons.
It begins with extremely simple programs and gradually introduces more objects and more
ideas for signal processing. The intention is to teach you a bit about different techniques for
synthesizing and processing digital audio, and at the same time teach you how to implement
those ideas with MSP. This tutorial assumes that you already know how to program with
Max.

Each chapter of this Tutorial corresponds to an example patch in the MSP Tutorial  folder. It
is suggested that you refer to the example patch and try it out as you read each lesson.

The chapters progress from simple to more complex, and they are also organized into six
subjects:

1) fundamentals—the basics of how to do digital audio with MSP

2) synthesis—generating sounds from scratch (within the computer)

3) sampling—recording and playing back sounds (that originate outside the computer)

4) MIDI control—using MIDI to change the signal processing in real time

5) analysis—getting information about sounds.

6) processing—altering sounds

Preparing for the Tutorial

To get the most out of this tutorial you will need

a) a stereo amplifier and speakers (or a pair of amplified multimedia speakers) for the
sound output of your computer

b) a line level audio source to play into your computer, such as a tape player, and

c) a MIDI keyboard controller with an interface to the computer’s modem port.

Audio

If you’re using the Sound Manager, you can hear the sounds you make in MSP by playing
them through the speakers built into your computer (or your monitor). To hear the best
fidelity of sound possible, however, it’s preferable to connect the audio output jack of your
computer (or the output jacks of your sound card if you have a special audio card installed)
to an amplifier and a good pair of speakers.



Introduction Tutorial

MSP Tutorial 29

Audio connections

Important:  Please note that the very first example patch plays a 1 kHz test tone at full volume.
This can be useful to you for setting the proper level of amplification, but you should begin
with your amplification turned way down in order to avoid possible damage to your
speakers and your ears. A good way to proceed would be to begin with the amplification
turned to zero, start the test tone playing, then increase the volume to the level that you
consider to be the appropriate maximum.

MIDI

Many of the example patches use MIDI to play notes in MSP or to control some parameters
of an MSP signal network. For this tutorial we make certain assumptions about the MIDI
controller  you are using. (The assumptions are the same as for the Max Tutorial.) They are:

• Your keyboard controller has at least 61 velocity-sensitive keys, a pitchbend wheel,
and a modulation wheel. (If you have any doubt about how to connect the keyboard
to your computer, see “Connecting MIDI Equipment” on page 6 of the volume
Getting Started With Max .)

• Max is receiving MIDI data from the keyboard via OMS on port a. For information
on how to make sure that this is the case, see “Configuring MIDI (OMS)” on pp. 7-
8 of Getting Started With Max , and “Using the MIDI Setup Dialog in OMS” on pp.
44-45 of the Max Reference  manual.



Tutorial 1 Fundamentals: Test tone

30 MSP Tutorial

To open the example program for each chapter of the Tutorial, choose Open...  from the File
menu in Max and find the document in the MSP Tutorial folder with the same number as the
chapter you are reading. It’s best to have the current Tutorial example document be the only
open Patcher window.

• Open the file called Tutorial 01. Test tone .

MSP objects are pretty much like Max objects

MSP objects are for processing digital audio (i.e., sound) to be played by your computer.
MSP objects look just like Max objects, have inlets and outlets just like Max objects, and are
connected together with patch cords just like Max objects. They are created the same way as
Max objects—just by placing an object box in the Patcher window and typing in the desired
name—and they co-exist quite happily with Max objects in the same Patcher window.

...but they’re a little different

A patch of interconnected MSP objects works a little differently from the way a patch of
standard Max objects works.

One way to think of the difference is just to think of MSP objects as working much faster
than ordinary Max objects. Since MSP objects need to produce enough numbers to generate
a high fidelity audio signal (commonly 44,100 numbers per second), they must work faster
than the millisecond schedule used by standard Max objects.

Here’s another helpful way to think of the difference. Think of a patch of MSP objects not as
a program in which events occur at specific instants (as in a standard Max patch), but rather
as a description of an instrument design—a synthesizer, sampler, or effect processor. It’s
like a mathematical formula, with each object constantly providing numerical values to the
object(s) connected to its outlet. At any given instant in time, this formula has a result,
which is the instantaneous amplitude of the audio signal. This is why we frequently refer to
an ensemble of inter-connected MSP objects as a signal network.

So, whereas a patch made up of standard Max objects sits idle and does nothing until
something occurs (a mouse click, an incoming MIDI message, etc.) causing one object to
send a message to another object, a signal network of MSP objects, by contrast, is always
active (from the time it’s turned on to the time it’s turned off), with all its objects constantly
communicating to calculate the appropriate amplitude for the sound at that instant.

...so they look a little different

The names of all MSP objects end with the tilde character (~). This character, which looks
like a cycle of a sine wave, just serves as an indicator to help you distinguish MSP objects
from other Max objects.

The patch cords between MSP objects have stripes. This helps you distinguish the MSP
signal network from the rest of the Max patch.



Fundamentals: Test tone Tutorial 1

MSP Tutorial 31

MSP objects are connected by striped patch cords

Digital-to-analog converter: dac~

The digital-to-analog converter  (DAC) is the part of your computer that translates the
stream of discrete numbers in a digital audio signal into a continuous fluctuating voltage
which will drive your loudspeaker.

Once you have calculated a digital signal to make a computer-generated sound, you must
send the numbers to the DAC. So, MSP has an object called dac~, which generally is the
terminal object in any signal network. It receives, as its input, the signal you wish to hear. It
has as many inlets as there are available channels of audio playback. If you are using the
Sound Manager to play sounds directly from your Power PC’s audio hardware, there are
two output channels, so there will be two inlets to dac~. (If you are using more elaborate
audio output hardware, you can type in an argument to specify other audio channels.)

dac ~ plays the signal

Important! dac~ must be receiving a signal of non-zero amplitude in order for you to hear
anything. dac ~ expects to receive signal values in the range -1.0 to 1.0. Numbers that
exceed that range will cause distortion when the sound is played.

Wavetable synthesis: cycle~

The best way to produce a periodic waveform is with cycle ~. This object uses the technique
known as “wavetable synthesis”. It reads through a list of 512 values at a specified rate,
looping back to the beginning of the list when it reaches the end. This simulates a
periodically repeating waveform.

You can direct cycle ~ to read from a list of values that you supply (in the form of an audio
file), or if you don’t supply one , it will read through its own table which represents a cycle of
a cosine wave with an amplitude of 1. We’ll show you how to supply your own waveform in
Tutorial 3 . For now we’ll use the cosine waveform.



Tutorial 1 Fundamentals: Test tone

32 MSP Tutorial

Graph of 512 numbers describing one cycle of a cosine wave with amplitude 1

cycle ~ receives a frequency value (in Hz) in its left inlet, and it determines on its own how
fast it should read through the list in order to send out a signal with the desired frequency.

Technical detail:  To figure out how far to step through the list for each consecutive
sample, cycle ~ uses the basic formula

I=ƒL/R

where I  is the amount to increment through the list, ƒ  is the signal’s frequency, L is the
length of the list (512 in this case), and R  is the audio sampling rate. cycle ~ is an
“interpolating oscillator”, which means that if I does not land exactly on an integer
index in the list for a given sample, cycle ~ interpolates between the two closest
numbers in the list to find the proper output value. Performing interpolation in a
wavetable oscillator makes a substantial improvement in audio quality. The cycle ~
object uses linear interpolation, while other MSP objects use very high-quality (and
more computationally expensive) polynomial interpolation.

By default cycle ~ has a frequency of 0 Hz. So in order to hear the signal, we need to supply
an audible frequency value. This can be done with a number argument as in the example
patch, or by sending a number in the left inlet, or by connecting another MSP object to the
left inlet.

Starting and stopping signal processing

The way to turn audio on and off is by sending the Max messages start and stop (or 1 and 0)
to the left inlet of a dac~ object (or an adc~ object, discussed in a later chapter). Sending start
or stop to any dac~ or adc~ object enables or disables processing for all  signal networks.

The simplest possible signal network

Although dac ~ is part of a signal network, it also understands certain Max messages, such
as start and stop. Many of the MSP objects function in this manner, accepting certain Max
messages as well as audio signals.



Fundamentals: Test tone Tutorial 1

MSP Tutorial 33

• Set your audio amplifier (or amplified speakers) to their minimum setting, then
click on the start message  box. Adjust your audio amplifier to the desired
maximum setting, then click on the stop message  box to turn off that annoying test
tone.

Troubleshooting

If you don’t hear any sound coming from your computer when you start the dac~ in this
example, check the level setting on your amplifier, check all your audio connections, and
check to ensure that you have all the proper files in your Max folder. Check the Monitors &
Sound (or Sound) control panel to ensure that the Sound Out Level is not muted and (if you
are listening through your computer’s built-in speakers) that the Computer Speaker
Volume is not muted. If you are using an audio card, check the Max window to see if MSP
has reported any errors in accessing the card.

Summary

A signal network of connected MSP objects describes an audio instrument. The digital-to-
analog converter of the instrument is represented by the dac~ object; dac~ must be
receiving a signal of non-zero amplitude (in the range -1.0 to 1.0) in order for you to hear
anything. The cycle ~ object is a wavetable oscillator which reads cyclically through a list of
512 amplitude values, at a rate determined by the supplied frequency value. Signal
processing is turned on and off by sending a start or stop message to any dac ~ or adc ~
object.

• Close the Patcher window before proceeding to the next chapter.



Tutorial 2 Fundamentals: Adjustable oscillator

34 MSP Tutorial

Amplifier: *~

A signal you want to listen to—a signal you send to dac~—must be in the amplitude range
from -1.0 to +1.0. Any values exceeding those bounds will be clipped off by dac ~ (i.e.
sharply limited to 1 or -1). This will cause (in most cases pretty objectionable) distortion of
the sound. Some objects, such as cycle ~, output values in that same range by default.

  

The default output of cycle ~ has amplitude of 1

To control the level of a signal  you simply multiply each sample by a scaling factor. For
example, to halve the amplitude of a signal you simply multiply it by 0.5. (Although it would
be mathematically equivalent to divide the amplitude of the signal by 2, multiplication is a
more efficient computation procedure than division.)

         

Amplitude adjusted by multiplication

If we wish to change the amplitude of a signal continuously over time, we can supply a
changing signal in the right inlet of *~. By continuously changing the value in the right inlet
of *~, we can fade the sound in or out, create a crescendo or diminuendo effect, etc.
However, a sudden drastic change in amplitude would cause a discontinuity in the signal,
which would be heard as a noisy click.

       

Instantaneous change of amplitude causes a noisy distortion of the signal

For that reason it’s usually better to modify the amplitude using a signal  that changes more
gradually with each sample, say in a straight line over the course of several milliseconds.



Fundamentals: Adjustable oscillator Tutorial 2

MSP Tutorial 35

Line segment generator: line~

If, instead of an instantaneous change of amplitude (which can cause an objectionable
distortion of the signal), we supply a signal in the right inlet of *~ that changes from 1.0 to
0.5 over the course of 5 milliseconds, we interpolate between the starting amplitude and the
target amplitude with each sample, creating a smooth amplitude change.

 
-1.0

+1.0

10 ms0

5 ms

Linear amplitude change over 5 milliseconds using line ~

The line ~ object functions similarly to the Max object line . In its left inlet it receives a target
value and a time (in ms) to reach that target. line ~ calculates the proper intermediate value
for each sample in order to change in a straight line from its current value to the target value.
One important difference between line ~ and line  is that line ~ can accept float input for
target values and transition times.

Technical detail:  Any change in the over-all amplitude of a signal introduces some
amount of distortion during the time when the amplitude is changing. (The shape of
the waveform is actually changed during that time, compared with the original
signal.) Whether this distortion is objectionable depends on how sudden the change
is, how great the change in amplitude is, and how complex the original signal is. A
small amount of such distortion introduced into an already complex signal may go
largely unnoticed by the listener. Conversely, even a slight distortion of a very pure
original signal will add partials to the tone, thus changing its timbre.

In the preceding example, the amplitude of a sinusoidal tone decreased by half (6 dB)
in 5 milliseconds. Although one might detect a slight change of timbre as the
amplitude drops, the shift is not drastic enough to be heard as a click. If, on the other
hand, the amplitude of a sinusoid increases eightfold (18 dB) in 5 ms, the change is
drastic enough to be heard as a percussive attack.

An eightfold (18 dB) increase in 5 ms creates a percussive effect



Tutorial 2 Fundamentals: Adjustable oscillator

36 MSP Tutorial

Adjustable oscillator

The example patch uses this combination of *~ and line ~ to make an adjustable amplifier for
scaling the amplitude of the oscillator. The pack  object appends a transition time to the
target amplitude value, so every change of amplitude will take 100 milliseconds. A number
box  for changing the frequency of the oscillator has also been included.

Oscillator with adjustable frequency and amplitude

Notice that the signal network already has default values before any Max message is sent to
it. The cycle ~ object has a specified frequency of 1000 Hz, and the line ~ object has a default
initial value of 0. Even if the *~ had a typed-in argument for initializing its right inlet, its
right operand would still be 0 because line ~ is constantly supplying it that value.

• Use the Amplitude  number box  to set the volume to the level you desire, then click
on the toggle  marked Audio On/Off to start the sound. Use the number box es to
change the frequency and amplitude of the tone. Click on the toggle  again to turn
the sound off.

Fade In and Fade Out

The combination of line ~ and *~ also helps to avoid the clicks that can occur when the audio
is turned on and off. The 1 and 0 “on” and “off” messages from the toggle  are used to fade
the volume up to the desired amplitude, or down to 0, just as the start or stop message is sent
to dac~. In that way, the sound is faded in and out gently rather than being turned on
instantaneously.



Fundamentals: Adjustable oscillator Tutorial 2

MSP Tutorial 37

On and off messages fade audio in or out before starting or stopping the DAC

Just before turning audio off, the 0 from toggle  is sent to the pack  object to start a 100 ms
fade-out of the oscillator’s volume. A delay of 100 ms is also introduced before sending the
stop message to dac~, in order to let the fade-out occur. Just before turning the audio on,
the desired amplitude value is triggered, beginning a fade-in of the volume; the fade-in does
not actually begin, however, until the dac~ is started—immediately after, in this case. (In an
actual program, the start and stop message  boxes might be hidden from view or
encapsulated in a subpatch in order to prevent the user from clicking on them directly.)

Summary

Multiplying each sample of an audio signal by some number other than 1 changes its
amplitude; therefore the *~ object is effectively an amplifier. A sudden drastic change of
amplitude can cause a click, so a more gradual fade of amplitude—by controlling the
amplitude with another signal—is usually advisable. The line segment signal generator line ~
is comparable to the Max object line  and is appropriate for providing a linearly changing
value to the signal network. The combination of line ~ and *~ can be used to make an
envelope  for controlling the over-all amplitude of a signal.



Tutorial 3 Fundamentals: Wavetable oscillator

38 MSP Tutorial

Audio on/off switch: ezdac~

In this tutorial patch, the dac~ object which was used in earlier examples has been replaced
by a button with a speaker icon. This is the ezdac~ object, a user interface object available in
the object palette.

ezdac ~ is an on/off button for audio, available in the object palette

The ezdac~ works much like dac~, except that clicking on it turns the audio on or off. It
can also respond to start and stop messages in its left inlet, like dac ~. (Unlike dac ~,
however, it is appropriate only for output channels 1 and 2.) The ezdac ~ button is
highlighted when audio is on.

A stored sound: buffer~

In the previous examples, the cycle ~ object was used to read repeatedly through 512 values
describing a cycle of a cosine wave. In fact, though, cycle ~ can read through any 512 values,
treating them as a single cycle of a waveform. These 512 numbers must be stored in an object
called buffer ~. (A buffer  means a holding place for data.)

A buffer ~ object requires a unique name typed in as an argument. A cycle ~ object can then
be made to read from that buffer by typing the same name in as its argument. (The initial
frequency value for cycle ~, just before the buffer name, is optional.)

cycle ~ reads its waveform from a buffer ~ of the same name

To get the sound into the buffer ~, send it a read message. That opens a standard file dialog
box, allowing you to select an AIFF  or Sound Designer II file to load. The word read can
optionally be followed by a specific file name, to read a file in without selecting it from the
dialog box, provided that the sound file is in Max’s search path.

Read in a specific sound immediately



Fundamentals: Wavetable oscillator Tutorial 3

MSP Tutorial 39

Regardless of the length of the sound in the buffer ~, cycle ~ uses only 512 samples from it
for its waveform. (You can specify a starting point in the buffer ~ for cycle ~ to begin its
waveform, either with an additional argument to cycle ~ or with a set message to cycle ~.)
In the example patch, we use a sound file that contains exactly 512 samples.

Technical detail:  In fact, cycle ~ uses 513 samples. The 513th sample is used only for
interpolation from the 512th sample. When cycle ~ is being used to create a periodic
waveform, as in this example patch, the 513th sample should be the same as the 1st
sample. If the buffer ~ contains only 512 samples, as in this example, cycle ~
supplies a 513th sample that is the same as the 1st sample.

• Click on the message  box that says read gtr512.aiff. This loads in the sound file.
Then click on the ezdac~ object to turn the audio on. (There will be no sound at
first. Can you explain why?) Next, click on the message  box marked B3 to listen to
1 second of the cycle ~ object.

There are several other objects that can use the data in a buffer ~, as you will see in later
chapters.

Create a breakpoint line segment function with line~

In the previous example patch, we used line ~ to make a linearly changing signal by sending
it a list of two numbers. The first number in the list was a target value and the second was the
amount of time, in milliseconds, for line ~ to arrive at the target value.

line ~ is given a target value (1.) and an amount of time to get there (100 ms)

If we want to, we can send line ~ a longer list containing many value-time pairs of numbers
(up to 64 pairs of numbers). In this way, we can make line ~ perform a more elaborate
function composed of many adjoining line segments. After completing the first line
segment, line ~ proceeds immediately toward the next target value in the list, taking the
specified amount of time to get there.

   

A function made up of line segments



Tutorial 3 Fundamentals: Wavetable oscillator

40 MSP Tutorial

Synthesizer users are familiar with using this type of function to generate an “ADSR”
amplitude envelope. That is what we’re doing in this example patch, although we can choose
how many line segments we wish to use for the envelope.

Other signal generators: phasor~ and noise~

The phasor ~ object produces a signal that ramps repeatedly from 0 to 1.

Signal produced by phasor ~

The frequency with which it repeats this ramp can be specified as an argument or can be
provided in the left inlet, in Hertz, just as with cycle ~. This type of function is useful at sub-
audio frequencies to generate periodically recurring events (a crescendo, a filter sweep,
etc.). At a sufficiently high frequency, of course, it is audible as a sawtooth waveform. In the
example patch, the phasor ~ is pitched an octave above cycle ~, and its output is scaled and
offset so that it ramps from -1 to +1.

     

 220 Hz sawtooth wave

Technical detail:  A sawtooth waveform produces a harmonic spectrum, with the
amplitude of each harmonic inversely proportional to the harmonic number. Thus, if
the waveform has amplitude A , the fundamental (first harmonic) has amplitude A,
the second harmonic has amplitude A/2 , the third harmonic has amplitude A/3 , etc.

The noise ~ object produces white noise : a signal that consists of a completely random
stream of samples. In this example patch, it is used to add a short burst of noise to the attack
of a composite sound.

• Click on the message  box marked B1 to hear white noise. Click on the message
box marked B2 to hear a sawtooth wave.



Fundamentals: Wavetable oscillator Tutorial 3

MSP Tutorial 41

Add signals to produce a composite sound

Any time two or more signals are connected to the same signal inlet, those signals are added
together and their sum is used by the receiving object.

Multiple signals are added (mixed) in a signal inlet

Addition of digital signals is equivalent to unity gain mixing in analog audio. It is important
to note that even if all your signals have amplitude less than or equal to 1, the sum of such
signals can easily exceed 1. In MSP it’s fine to have a signal with an amplitude that exceeds 1,
but before sending the signal to dac~ you must scale it (usually with a *~ object) to keep its
amplitude less than or equal to 1. A signal with amplitude greater than 1 will be distorted by
dac ~.

In the example patch, white noise, a 220 Hz sawtooth wave, and a 110 Hz tone using the
waveform in buffer ~ are all mixed together to produce a composite instrument sound.

Three signals mixed to make a composite instrument sound

Each of the three tones has a different amplitude envelope, causing the timbre of the note to
evolve over the course of its 1-second duration. The three tones combine to form a note that
begins with noise, quickly becomes electric-guitar-like, and gets a boost in its overtones
from the sawtooth wave toward the end. Even though the three signals crossfade, their
amplitudes are such that there is no possibility of clipping (except, possibly, in the very
earliest milliseconds of the note, which are very noisy anyway).



Tutorial 3 Fundamentals: Wavetable oscillator

42 MSP Tutorial

• Click on the button  to play all three signals simultaneously. To hear each of the
individual parts that comprise the note, click on the message  boxes marked A1,
A2, and A3. If you want to hear how each of the three signals sounds sustained at full
volume, click on the message  boxes marked B1, B2, and B3. When you have
finished, click on ezdac ~ to turn the audio off.

Summary

The ezdac~ object is a button for switching the audio on and off. The buffer ~ object stores
a sound. You can load a sound file into buffer ~ with a read message, which opens a standard
file dialog box for choosing the file to load in. If a cycle ~ object has a typed-in argument
which gives it the same name as a buffer ~ object has, the cycle ~ will use 512 samples from
that buffered sound as its waveform, instead of the default cosine wave.

The phasor ~ object generates a signal that increases linearly from 0 to 1. This ramp from 0
to 1 can be generated repeatedly at a specific frequency to produce a sawtooth wave. For
generating white noise, the noise ~ object sends out a signal consisting of random samples.

Whenever you connect more than one signal to a given signal inlet, the receiving object adds
those signals together and uses the sum as its input in that inlet. Exercise care when mixing
(adding) audio signals, to avoid distortion caused by sending a signal with amplitude
greater than 1 to the DAC; signals must be kept in the range -1 to +1 when sent to dac ~ or
ezdac ~.

The line ~ object can receive a list in its left inlet that consists of up to 64 pairs of numbers
representing target values and transition times. It will produce a signal that changes linearly
from one target value to another in the specified amounts of time. This can be used to make a
function of line segments describing any shape desired, which is particularly useful as a
control signal for amplitude envelopes. You can achieve crossfades between signals by using
different amplitude envelopes from different line ~ objects.



Fundamentals: Routing signals Tutorial 4

MSP Tutorial 43

Remote signal connections: send~ and receive~

The patch cords that connect MSP objects look different from normal patch cords because
they actually do something different. They describe the order of calculations in a signal
network. The connected objects will be used to calculate a whole block of samples for the next
portion of sound.

Max objects can communicate remotely, without patch cords, with the objects send  and
receive  (and some similar objects such as value  and pv ). You can transmit MSP signals
remotely with send  and receive , too, but the patch cord(s) coming out of receive  will not
have the yellow-and-black striped appearance of the signal network (because a receive
object doesn’t know in advance what kind of message it will receive). Two MSP objects exist
specifically for remote transmission of signals: send ~ and receive ~.

send  and receive  for Max messages; send ~  and receive ~  for signals

The two objects send ~ and receive ~ work very similarly to send  and receive , but are
only for use with MSP objects. Max will allow you to connect normal patch cords to send ~
and receive ~, but only signals will get passed through send ~ to the corresponding
receive ~. The MSP objects send ~ and receive ~ don’t transmit any Max messages besides
signals.

There are a few other important differences between the Max objects send  and receive  and
the MSP objects send ~ and receive ~.

1. The names of send  and receive  can be shortened to s and r; the names of send ~
and receive ~ cannot be shortened in the same way.

2. A Max message can be sent to a receive  object from several other objects besides
send , such as float , forward , grab , if , int , and message ; receive ~ can receive a
signal only from a send ~ object that shares the same name.

3. If receive  has no typed-in argument, it has an inlet for receiving set messages to set
or change its name; receive ~ also has an inlet for that purpose, but is nevertheless
required to have a typed-in argument.

4. Changing the name of a receive ~ object with a set message is a useful way of
dynamically redirecting audio signals. Changing the name of receive , however,
does not redirect the signal until you turn audio off and back on again.

Examples of each of these usages can be seen in the tutorial patch.



Tutorial 4 Fundamentals: Routing signals

44 MSP Tutorial

Routing a signal: gate~

The MSP object gate ~ works very similarly to the Max object gate . Just as gate  is used to
direct messages to one of several destinations, or to shut the flow of messages off entirely,
gate ~ directs a signal to different places, or shuts it off from the rest of the signal network.

In the example patch, the gate~ objects are used to route signals to the left audio output, the
right audio output, both, or neither, according to what number is received from the umenu
objects.

gate ~ sends a signal to a chosen location

It is worth noting that changing the chosen outlet of a gate~ while an audio signal is playing
through it can cause an audible click because the signal shifts abruptly from one outlet to
another. To avoid this, you should generally design your patch in such a way that gate~’s
outlet will only be changed when the audio signal going through it is at zero or when audio is
off. (No such precaution was taken in the tutorial patch.)

Wave interference

It’s a fundamental physical fact that when we add together two sinusoidal waves with
different frequencies we create interference between the two waves. Since they have different
frequencies, they will usually not be exactly in phase with each other; so, at some times they
will be sufficiently in phase that they add together constructively, but at other times they add
together destructively, canceling each other out to some extent. They only arrive precisely in
phase with each other at a rate equal to the difference in their frequencies. For example, a
sinusoid at 1000 Hz and another at 1002 Hz come into phase exactly 2 times per second. In
this case, they are sufficiently close in frequency that we don’t hear them as two separate
tones. Instead, we hear their recurring pattern of constructive and destructive interference
as beats  occurring at a sub-audio rate of 2 Hz, a rate known as the difference frequency  or
beat frequency.

When the example patch is opened, a loadbang  object sends initial frequency values to the
cycle~  objects—1000 Hz and 1002 Hz—so we expect that these two tones sounded
together will cause a beat frequency of 2 Hz. It also sends initial values to the gate~ objects
(passing through the umenu s on the way) which will direct one tone to the left audio output
and one to the right audio output.



Fundamentals: Routing signals Tutorial 4

MSP Tutorial 45

The two waves interfere at a rate of 2 Hz

• Click on ezdac~ to turn audio on, then use the uslider  marked “Volume” to adjust
the loudness of the sound to a comfortable level. Note that the beats occur exactly
twice per second. Try changing the frequency of Oscillator B to various other
numbers close to 1000, and note the effect. As the difference frequency approaches
an audio rate (say, in the range of 20-30 Hz) you can no longer distinguish
individual beats, and the effect becomes more of a timbral change. Increase the
difference still further, and you begin to hear two distinct frequencies.

Philosophical tangent: It can be shown mathematically and empirically that when two
sinusoidal tones are added, their interference pattern recurs at a rate equal to the
difference in their frequencies. This apparently explains why we hear beats; the
amplitude demonstrably varies at the difference rate. However, if you listen to this
patch through headphones—so that the two tones never have an opportunity to
interfere mathematically, electrically, or in the air—you still hear the beats! This
phenomenon, known as binaural beats  is caused by “interference” occurring in the
nervous system. Although such interference is of a very different physical nature
than the interference of sound waves in the air, we experience it as similar. An
experiment like this demonstrates that our auditory system actively shapes the world
we hear.

Amplitude and relative amplitude

The uslider  marked “Volume” has been set to have a range of 101 values, from 0 to 100,
which makes it easy to convert its output to a float ranging from 0 to 1 just by dividing by
100. (The decimal point in argument typed into the / object ensures a float division.)



Tutorial 4 Fundamentals: Routing signals

46 MSP Tutorial

A volume fader is made by converting the int output of uslider  to a float from 0. to 1.

The *~ objects use the specified amplitude value to scale the audio signal before it goes to the
ezdac ~. If both oscillators get sent to the same inlet of ezdac ~, their combined amplitude
will be 2. Therefore, it is prudent to keep the amplitude scaling factor at or below 0.5. For
that reason, the amplitude value—which the user thinks of as being between 0 and 1—is
actually kept between 0 and 0.5 by the * 0.5 object.

The amplitude is halved in case both oscillators are going to the same output channel

Because of the wide range of possible audible amplitudes, it may be more meaningful in
some cases to display volume numerically in terms of the logarithmic scale of decibels (dB),
rather than in terms of absolute amplitude. The decibel scale refers to relative amplitude—the
amplitude of a signal relative to some reference amplitude. The formula for calculating
amplitude in decibels is

dB = 20(log10 (A/Aref ))

where A  is the amplitude being measured and Aref  is a fixed reference amplitude.

The subpatch AtodB  uses a reference amplitude of 1 in the formula shown above, and
converts the amplitude to dB.

The contents of the subpatch AtodB



Fundamentals: Routing signals Tutorial 4

MSP Tutorial 47

Since the amplitude received from the uslider  will always be less than or equal to 1, the
output of AtodB  will always be less than or equal to 0 dB. Each halving of the amplitude is
approximately equal to a 6 dB reduction.

AtodB  reports amplitude in dB, relative to a reference amplitude of 1

• Change the position of the uslider  and compare the linear amplitude reading to the
logarithmic decibel scale reading.

Constant signal value: sig~

Most signal networks require some changing values (such as an amplitude envelope to vary
the amplitude over time) and some constant values (such as a frequency value to keep an
oscillator at a steady pitch). In general, one provides a constant value to an MSP object in the
form of float message, as we have done in these examples when sending a frequency in the left
inlet of a cycle ~ object.

However, there are some cases when one wants to combine both constant and changing
values in the same inlet of an MSP object. Most inlets that accept either a float or a signal
(such as the left inlet of cycle ~) do not successfully combine the two. For example, cycle ~
ignores a float in its left inlet if it is receiving a signal in the same inlet.

cycle ~ ignores its argument or a float input when a signal is connected to the left inlet

One way to combine a numerical Max message (an int or a float) with a signal is to convert
the number into a steady signal with the sig ~ object. The output of sig ~ is a signal with a
constant value, determined by the number received in its inlet.



Tutorial 4 Fundamentals: Routing signals

48 MSP Tutorial

sig ~ converts a float to a signal so it can be combined with another signal

In the example patch, Oscillator B combines a constant frequency (supplied as a float to sig ~)
with a varying frequency offset (an additional signal value). The sum of these two signals
will be the frequency of the oscillator at any given instant.

Changing the phase of a waveform

For the most part, the phase offset of an isolated audio wave doesn’t have a substantial effect
perceptually. For example, a sine wave in the audio range sounds exactly like a cosine wave,
even though there is a theoretical phase difference of a quarter cycle. For that reason, we have
not been concerned with the rightmost phase inlet of cycle ~ until now.

A sine wave offset by a quarter cycle is a cosine wave

However, there are some very useful reasons to control the phase offset of a wave. For
example, by leaving the frequency of cycle ~ at 0, and continuously increasing its phase
offset, you can change its instantaneous value (just as if it had a positive frequency). The
phase offset of a sinusoid is usually referred to in degrees  (a full cycle is 360°) or radians (a
full cycle is 2π radians). In the cycle ~ object, phase is referred to in wave cycles; so an offset
of π radians is 1/2 cycle, or 0.5. In other words, as the phase varies from 0 to 2π radians, it
varies from 0 to 1 wave cycles. This way of describing the phase is handy since it allows us
to use the common signal range from 0 to 1.

So, if we vary the phase offset of a stationary (0 Hz) cycle ~ continuously from 0 to 1 over
the course of one second, the resulting output is a cosine wave with a frequency of 1 Hz.



Fundamentals: Routing signals Tutorial 4

MSP Tutorial 49

The resulting output is a cosine wave with a frequency of 1 Hz

Incidentally, this shows us how the phasor ~ object got its name. It is ideally suited for
continuously changing the phase of a cycle ~ object, because it progresses repeatedly from 0
to 1. If a phasor ~ is connected to the phase inlet of a 0 Hz cycle ~, the frequency of the
phasor ~ will determine the rate at which the cycle ~’s waveform is traversed, thus
determining the effective frequency of the cycle ~.

The effective frequency of the 0 Hz cycle ~ is equal to the rate of the phasor~

The important point demonstrated by the tutorial patch, however, is that the phase inlet can
be used to read through the 512 samples of cycle ~’s waveform at any desired rate. (In fact,
the contents of cycle ~ can be scanned at will with any value in the range 0 to 1.) In this case,
line ~ is used to change the phase of cycle ~ from .75 to 1.75 over the course of 10 seconds.

The result is one cycle of a sine wave. The sine wave is multiplied by a “depth” factor to scale
its amplitude up to 8. This sub-audio sine wave, varying slowly from 0 up to 8, down to -8
and back to 0, is added to the frequency of Oscillator B. This causes the frequency of
Oscillator B to fluctuate very slowly between 1008 Hz and 992 Hz.

• Click on the message  box in the lower-left part of the window, and notice how the
beat frequency varies sinusoidally over the course of 10 seconds, from 0 Hz up to 8
Hz (as the frequency of Oscillator B approaches 1008 Hz), back to 0 Hz, back up to
8 Hz (as the frequency of Oscillator B approaches 992 Hz), and back to 0 Hz.



Tutorial 4 Fundamentals: Routing signals

50 MSP Tutorial

Receiving a different signal

The remaining portion of the tutorial patch exists simply to demonstrate the use of the set
message to the receive ~ object. This is another way to alter the signal flow in a network.
With set, you can change the name of the receive ~ object, which causes receive ~ to get its
input from a different send ~ object (or objects).

Giving receive ~ a new name changes its input

• Click on the message  box containing set sawtooth. Both of the connected receive ~
objects now get their signal from the phasor ~ in the lower-right corner of the
window. Click on the message  boxes containing set outL and set outR to receive
the sinusoidal tones once again. Click on ezdac ~ to turn audio off.

Summary

It is possible to make signal connections without patch cords, using the MSP objects send ~
and receive ~, which are similar to the Max objects send  and receive . The set message can
be used to change the name of a receive ~ object, thus switching it to receive its input from a
different send ~ object (or objects). Signal flow can be routed to different destinations, or
shut off entirely, using the gate~ object, which is the MSP equivalent of the Max object
gate .

The cycle ~ object can be used not only for periodic audio waves, but also for sub-audio
control functions: you can read through the waveform of a cycle ~ object at any rate you
wish, by keeping its frequency at 0 Hz and changing its phase continuously from 0 to 1. The
line ~ object is appropriate for changing the phase of a cycle ~ waveform in this way, and
phasor ~ is also appropriate because it goes repeatedly from 0 to 1.

The sig ~ object converts a number to a constant signal; it receives a number in its inlet and
sends out a signal that value. This is useful for combining constant values with varying
signals. Mixing together tones with slightly different frequencies creates interference
between waves, which can create beats and other timbral effects.



Fundamentals: Turning signals on and off Tutorial 5

MSP Tutorial 51

Turning audio on and off selectively

So far we have seen two ways that audio processing can be turned on and off:

1)  Send a start or stop message to a dac ~, adc ~, ezdac ~, or ezadc ~ object.
2)  Click on a ezdac ~ or ezadc ~ object.

There are a couple of other ways we have not yet mentioned:

3)  Send an int to a dac~, adc ~, ezdac ~, or ezadc ~ object. 0 is the same as stop, and a
non-zero number is the same as start.

4)  Double-click on a dac~ or adc~ object to open the DSP Status window, then use its
Audio  on/off pop-up menu.

Any of those methods of starting MSP will turn the audio on in all  open Patcher windows
and their subpatches. There is also a way to turn audio processing on and off in a single
Patcher.

Sending the message startwindow—instead of start—to a dac ~, adc ~  , ezdac ~  , or ezadc ~
object turns the audio on only in the Patcher window that contains that object, and in its
subpatches. It turns audio off in all other Patchers. The startwindow message is very useful
because it allows you to have many different signal networks loaded in different Patchers, yet
turn audio on only in the Patcher that you want to hear. If you encapsulate different signal
networks in separate patches, you can have many of them loaded and available but only turn
on one at a time, which helps avoid overtaxing your computer’s processing power. (Note
that startwindow is used in all MSP help files so that you can try the help file’s demonstration
without hearing your other work at the same time.)

In some cases startwindow is more appropriate than start

Selecting one of several signals: selector~

In the previous chapter, we saw the gate~ object used to route a signal to one of several
possible destinations. Another useful object for routing signals is selector ~, which is
comparable to the Max object switch . Several different signals can be sent into selector ~,
but it will pass only one of them—or none at all—out its outlet. The left inlet of selector ~
receives an int specifying which of the other inlets should be opened. Only the signal coming
in the opened inlet gets passed on out the outlet.



Tutorial 5 Fundamentals: Turning signals on and off

52 MSP Tutorial

The number in the left inlet determines which other inlet is open

As with gate ~, switching signals with selector ~ can cause a very abrupt change in the
signal being sent out, resulting in unwanted clicks. So if you want to avoid such clicks it’s
best to change the open inlet of selector ~ only when audio is off or when all of its input
signal levels are 0.

In the tutorial patch, selector ~ is used to choose one of four different classic synthesizer
wave types: sine, sawtooth, triangle, or square. The umenu  contains the names of the wave
types, and sends the correct number to the control inlet of selector ~ to open the desired
inlet.

• Choose a wave type from the pop-up menu, then click on the startwindow message .
Use the pop-up menu to listen to the four different waves. Click on the stop
message  to turn audio off.

Technical detail:  A sawtooth wave contains all harmonic partials, with the amplitude
of each partial proportional to the inverse of the harmonic number. If the
fundamental (first harmonic) has amplitude A , the second harmonic has amplitude
A/2 , the third harmonic has amplitude A/3 , etc. A square wave contains only odd
numbered harmonics of a sawtooth spectrum. A triangle wave contains only odd
harmonics of the fundamental, with the amplitude of each partial proportional to the
square of the inverse of the harmonic number. If the fundamental has amplitude A,
the third harmonic has amplitude A/9 , the fifth harmonic has amplitude A/25 , etc.

Note that the waveforms in this patch are ideal shapes, not band-limited versions. That is to
say, there is nothing limiting the high frequency content of the tones. For the richer tones
such as the sawtooth and pulse waves, the upper partials can easily exceed the Nyquist rate
and be folded back into the audible range. The partials that are folded over will not belong to
the intended spectrum, and the result will be an inharmonic spectrum. As a case in point, if
we play an ideal square wave at 2,500 Hz, only the first four partials can be accurately
represented with a sampling rate of 44.1 kHz. The frequencies of the other partials exceed
the Nyquist rate of 22,050 Hz, and they will be folded over back into the audible range at
frequencies that are not harmonically related to the fundamental. For example, the eighth
partial (the 15th harmonic) has a frequency of 37,500 Hz, and will be folded over and heard
as 6,600 Hz, a frequency that is not a harmonic of 2,500. (And its amplitude is only about
24 dB less than that of the fundamental.) Other partials of the square wave will be similarly
folded over.



Fundamentals: Turning signals on and off Tutorial 5

MSP Tutorial 53

22,050 Hz

A

ƒ6,600 37,500

Partials that exceed the Nyquist frequency are folded over

• Choose the square wave from the pop-up menu, and set the frequency to 2500 Hz.
Turn audio on. Notice that some of the partials you hear are not harmonically related
to the fundamental. If you move the frequency up further, the folded-over partials
will go down by the same amount. Turn audio off.

Turning off part of a signal network: begin~

You have seen that the selector ~ and gate~ objects can be used to listen selectively to a
particular part of the signal network. The parts of the signal network that are being
ignored—for example, any parts of the network that are going into a closed inlet of
selector ~—continue to run even though they have been effectively disconnected. That
means MSP continues to calculate all the numbers necessary for that part of the signal
network, even though it has no effect on what you hear. This is rather wasteful,
computationally, and it would be preferable if one could actually shut down the processing
for the parts of the signal network that are not needed at a given time.

If the begin ~ object is placed at the beginning of a portion of a signal network, and that
portion goes to the inlet of a selector ~ or gate~ object, all calculations for that portion of
the network will be completely shut down when the selector ~ or gate ~ is ignoring that
signal. This is illustrated by comparing the sinusoid and sawtooth signals in the tutorial
patch.

When the sinusoid is chosen, processing for the sawtooth is turned off entirely



Tutorial 5 Fundamentals: Turning signals on and off

54 MSP Tutorial

When the first signal inlet of selector ~ is chosen, as in the example shown above, the other
signal inlets are ignored. Calculations cease for all the objects between begin ~ and
selector ~—in this case, the sig ~, *~, and phasor ~ objects. The line ~ object, because it is
not in the chain of objects that starts with begin ~, continues to run even while those other
objects are stopped.

 • Choose “Sawtooth” from the pop-up menu, set the frequency back to 440 Hz, and
turn audio on. Click on the message  box above the line ~ object. The line ~ makes a
glissando up an octave and back down over the course of ten seconds. Now click on it
again, let the glissando get underway for two seconds, then use the pop-up menu to
switch the selector ~ off. Wait five seconds, then switch back to the sawtooth. The
glissando is on its way back down, indicating that the line ~ object continued to work
even though the sig ~, *~, and phasor ~ objects were shut down. When the glissando
has finished, turn audio off.

The combination of begin ~ and selector ~ (or gate~) can work perfectly well from one
subpatch to another, as well.

• Double-click on the patcher  triangle object to view its contents.

Contents of the patcher  triangle object

Here the begin ~ object is inside a subpatch, and the selector ~ is in the main patch, but the
combination still works to stop audio processing in the objects that are between them. There
is no MSP object for making a triangle wave, so cycle ~ reads a single cycle of a triangle
wave from an AIFF file loaded into a buffer ~.

begin ~ is really just an indicator of a portion of the signal network that will be disabled when
selector ~ turns it off. What actually comes out of begin ~ is a constant signal of 0, so
begin ~ can be used at any point in the signal network where a 0 signal is appropriate. It can
either be added with some other signal in a signal inlet (in which case it adds nothing to that
signal), or it can be connected to an object that accepts but ignores signal input, such as sig ~
or noise ~.

Disabling audio in a Patcher: mute~ and pcontrol

You have seen that the startwindow message to dac~ turns audio on in a single Patcher and its
subpatches, and turns audio off in all other patches. There are also a couple of ways to turn
audio off in a specific subpatch, while leaving audio on elsewhere. One way is to connect a
mute ~ object to the inlet of the subpatch you want to control.



Fundamentals: Turning signals on and off Tutorial 5

MSP Tutorial 55

Stopping audio processing in a specific subpatch

To mute a subpatch, connect a mute ~ object to the inlet of the subpatch, as shown. When
mute ~ receives a non-zero int in its inlet, it stops audio processing for all MSP objects in the
subpatch. Sending 0 to mute ~’s inlet unmutes the subpatch.

• Choose “Square” from the pop-up menu, and turn audio on to hear the square wave.
Click on the toggle  above the mute ~ object to disable the patcher  pulsewave
subpatch. Click on the same toggle  again to unmute the subpatch.

This is similar to using the begin ~ and selector ~ objects, but the mute ~ object disables the
entire subpatch. (Also, the syntax is a little different. Because of the verb “mute”, a non-zero
int to mute ~ has the effect of turning audio off, and 0 turns audio on.)

In the tutorial example, it really is overkill to have the output of patcher  pulsewave go to
selector ~ and  to have a mute ~ object to mute the subpatch. However, it’s done here to
show a distinction. The selector ~ can cut off the flow of signal from the patcher  pulsewave
subpatch, but the MSP objects in the subpatch continue to run (because there is no begin ~
object at its beginning). The mute ~ object allows one to actually stop the processing in the
subpatch, without using begin ~ and selector ~.

• Double-click on the patcher  pulsewave object to see its contents.

Output is 1 for half the cycle, and 0 for half the cycle

To make a square wave oscillator, we simply send the output of phasor ~—which goes from
0 to 1—into the inlet of <~ 0.5 (<~ is the MSP equivalent of the Max object <). For the first
half of each wave cycle, the output of phasor ~ is less than 0.5, so the <~ object sends out 1.
For the second half of the cycle, the output of phasor ~ is greater than 0.5, so the <~ object
sends out 0.

Another way to disable the MSP objects in a subpatch is with the pcontrol  object. Sending
the message enable 0 to a pcontrol  object connected to a subpatch disables all MSP objects—
and all MIDI objects!—in that subpatch. It’s the same thing as clicking on the MIDI icon in
the title bar of the subpatch’s Patcher window. The message enable 1 re-enables MIDI and
audio objects in the subpatch.



Tutorial 5 Fundamentals: Turning signals on and off

56 MSP Tutorial

pcontrol can disable and re-enable all MIDI and audio objects in a subpatch

The patcher  harmonics subpatch contains a complete signal network that’s essentially
independent of the main patch. We used pcontrol  to disable that subpatch initially, so that it
won’t conflict with the sound coming from the signal network in the main patch. (Notice
that loadbang  causes an enable 0 message to be sent to pcontrol  when the main patch is
loaded, disabling the MSP objects in the subpatch.)

• Turn audio off, click on the toggle  above the patcher  harmonics object to enable it,
then double-click on the patcher  harmonics object to see its contents.

This subpatch combines 8 harmonically related sinusoids to create a complex tone in which
the amplitude of each harmonic (harmonic number n) is proportional to 1/ 2n. Because the
tones are harmonically related, their sum is a periodic wave at the fundamental frequency.

Wave produced by the patcher  harmonics subpatch

The eight frequencies fuse together psychoacoustically and are heard as a single complex tone
at the fundamental frequency. It is interesting to note that even when the fundamental tone is
removed, the sum of the other seven harmonics still implies that fundamental, and we
perceive only a loudness change and a timbral change but no change in pitch.

The same tone, minus its first harmonic, still has the same period



Fundamentals: Turning signals on and off Tutorial 5

MSP Tutorial 57

• Click on the startwindow message  to start audio in the subpatch. Try removing and
replacing the fundamental frequency by sending 0 and 1 to the selector ~. Click on
stop to turn audio off.

Summary

The startwindow message to dac ~ (or adc ~) starts audio processing in the Patcher window
that contains the dac~, and in any of that window’s subpatches, but turns audio off in all
other patches. The mute ~ object, connected to an inlet of a subpatch, can be used to disable
all MSP objects in that subpatch. An enable 0 message to a pcontrol  object connected to an
inlet of a subpatch can also be used to disable all MSP objects in that subpatch. (This disables
all MIDI objects in the subpatch, too.)

You can use a selector ~ object to choose one of several signals to be passed on out the outlet,
or to close off the flow of all the signals it receives. All MSP objects that are connected in a
signal flow between the outlet of a begin ~ object and an inlet of a selector ~ object (or a
gate~ object) get completely disconnected from the signal network when that inlet is closed.

Any of these methods is an effective way to play selectively a subset of all the MSP objects in
a given signal network (or to select one of several different networks). You can have many
signal networks loaded, but only enable one at a time; in this way, you can switch quickly
from one sound to another, but the computer only does processing that affects the sound you
hear.



Tutorial 6 Fundamentals: Review

58 MSP Tutorial

Exercises in the fundamentals of MSP

In this chapter, we suggest some tasks for you to program that will test your understanding
of the fundamentals of MSP presented in the Tutorial so far. A few hints are included to get
you started. Try these three progressive exercises on your own first, in new file of your
own. Then check the example patch to see a possible solution, and read on in this chapter for
an explanation of the solution patch.

Exercise 1

• Write a patch that plays the note E above middle C for one second, ten times in a
row, with an electric guitar-like timbre. Make it so that all you have to do is click
once to turn audio on, and once to play the ten notes.

Here are a few hints:

1) The frequency of E above middle C is 329.627557 Hz.

2) For an “electric guitar-like timbre” you can use the AIFF file gtr512.aiff that was
used in Tutorial 3 . You’ll need to read that file into a buffer ~, and access the buffer ~
with a cycle ~ object. In order to read the file in directly, without a dialog box to find
the file, your patch and the sound file should be saved in the same folder. You can
either save your patch in the MSP Tutorial  folder or, in the Finder, option-drag a
copy of the gtr512.aiff  file into the folder where you have saved your patch.

3) Your sound will also need an amplitude envelope that is characteristic of a guitar:
very fast attack, fast decay, and fairly steady (only slightly diminishing) sustain. Try
using a list of line segments (target values and transition times) to a line ~ object, and
using the output of line ~ to scale the amplitude of the cycle ~.

4) To play the note ten times in a row, you’ll need to trigger the amplitude envelope
repeatedly at a steady rate. The Max object metro  is well suited for that task. To stop
after ten notes, your patch should either count the notes or wait a specific amount of
time, then turn the metro  off.

Exercise 2

• Modify your first patch so that, over the course of the ten repeated notes, the electric
guitar sound crossfades with a sinusoidal tone a perfect 12th higher. Use a linear
crossfade, with the amplitude of one sound going from 1 to 0, while the other sound
goes from 0 to 1. (We discuss other ways of crossfading in a future chapter.) Send
the guitar tone to the left audio output channel, and the sine tone to the right channel.

Hints:

1) You will need a second cycle ~ object to produce the tone a 12th higher.



Fundamentals: Review Tutorial 6

MSP Tutorial 59

2) To obtain the frequency that’s a (just tuned) perfect 12th above E, simply multiply
329.627557 times 3. The frequency that’s an equal tempered perfect 12th above E is
987.7666 Hz. Use whichever tuning you prefer.

3) In addition to the amplitude envelope for each note, you will need to change the over-
all amplitude of each tone over the course of the ten seconds. This can be achieved
using an additional *~ object to scale the amplitude of each tone, slowly changing the
scaling factor from 1 to 0 for one tone, and from 0 to 1 for the other.

Exercise 3

• Modify your second patch so that, over the course of the ten repeated notes, the two
crossfading tones also perform an over-all diminuendo , diminishing to 1/ 32  their
original amplitude (i.e., by 30 dB).

Hints:

1) This will require yet another amplitude scaling factor (presumably another *~ object)
to reduce the amplitude gradually by a factor of .03125.

2)  Note that if you scale the amplitude linearly from 1 to .03125 in ten seconds, the
diminuendo will seem to start slowly and accelerate toward the end. That’s because
the linear distance between 1 and .5 (a reduction in half) is much greater than the
linear distance between .0625 and .03125 (also a reduction in half). The first 6 dB of
diminuendo will therefore occur in the first 5.16 seconds, but the last 6 dB reduction
will occur in the last .32 seconds. So, if you want the diminuendo to be perceived as
linear, you will have to adjust accordingly.

Solution to Exercise 1

• Scroll the example Patcher window all the way to the right to see one possible
solution to these exercises.

To make an oscillator with a guitar-like waveform, you need to read the sound file
gtr512.aiff  (or some similar waveform) into a buffer ~, and then refer to that buffer ~ with
a cycle ~. (See Tutorial 3 .)

cycle ~ traverses the buffer ~  329.627533 times per second

Note that there is a limit to the precision with which Max can represent decimal numbers.
When you save your patch, Max may change float values slightly. In this case, you won’t
hear the difference.

If you want the sound file to be read into the buffer ~ immediately when the patch is loaded,
you can type the filename in as a second argument in the buffer ~ object, or you can use



Tutorial 6 Fundamentals: Review

60 MSP Tutorial

loadbang  to trigger a read message to buffer ~. In our solution we also chose to provide the
frequency from a number box —which allows you to play other pitches—rather than as an
argument to cycle ~, so we also send cycle ~ an initial frequency value with loadbang .

loadbang  is used to initialize the contents of buffer ~ and the frequency of cycle ~

Now that we have an oscillator producing the desired tone, we need to provide an amplitude
envelope to shape a note. We chose the envelope shown below, composed of straight line
segments. (See Tutorial 3 .)

0
0 1 sec.

1

“Guitar-like” amplitude envelope

This amplitude envelope is imposed on the output of cycle ~ with a combination of line ~
and *~. A metro  is used to trigger the envelope once per second, and the metro  gets turned
off after a 10-second delay.

Ten guitar-like notes are played when the button  is clicked



Fundamentals: Review Tutorial 6

MSP Tutorial 61

Solution to Exercise 2

For the right output channel we want a sinusoidal tone at three times the frequency (the third
harmonic of the fundamental tone), with the same amplitude envelope.

Two oscillators with the same amplitude envelope and related frequencies

To crossfade between the two tones, the amplitude of the first tone must go from 1 to 0 while
the amplitude of the second tone goes from 0 to 1. This can again be achieved with the
combination of line ~ and *~ for each tone.

Linear crossfade of two tones

We used a little trick to economize. Rather than use a separate line ~ object to fade the second
tone from 0 to 1, we just subtract 1 from the output of the existing line ~, which gives us a
ramp from 0 to -1. Perceptually this will have the same effect.

This crossfade is triggered (via s  and r  objects) by the same button  that triggers the metro ,
so the crossfade starts at the same time as the ten individual notes do.

Solution to Exercise 3

Finally, we need to use one more amplitude envelope to create a global diminuendo . The two
tones go to yet another *~ object, controlled by another line ~. As noted earlier, a straight
line decrease in amplitude will not give the perception of constant diminuendo in loudness.
Therefore, we used five line segments to simulate a curve that decreases by half every two
seconds.



Tutorial 6 Fundamentals: Review

62 MSP Tutorial

0 10 sec.
0

1

Global amplitude envelope decreasing by half every two seconds

This global amplitude envelope is inserted in the signal network to scale both tones down
smoothly by a factor of .03125 over 10 seconds.

Both tones are scaled by the same global envelope



Synthesis: Additive synthesis Tutorial 7

MSP Tutorial 63

In the tutorial examples up to this point we have synthesized sound using basic waveforms.
In the next few chapters we’ll explore a few other well known synthesis techniques using
sinusoidal waves. Most of these techniques are derived from pre-computer analog synthesis
methods, but they are nevertheless instructive and useful.

Combining tones

A sine wave contains energy at a single frequency. Since complex tones, by definition, are
composed of energy at several (or many) different frequencies, one obvious way to
synthesize complex tones is to use multiple sine wave oscillators and add them together.

Four sinusoids added together to make a complex tone

Of course, you can add any waveforms together to produce a composite tone, but we’ll stick
with sine waves in this tutorial example. Synthesizing complex tones by adding sine waves
is a somewhat tedious method, but it does give complete control over the amplitude and
frequency of each component (partial) of the complex tone.

In the tutorial patch, we add together six cosine oscillators (cycle ~ objects), with
independent control over the frequency, amplitude, and phase of each one. In order to
simplify the patch, we designed a subpatch called partial ~ which allows us to specify the
frequency of each partial as a ratio relative to a fundamental frequency.

The contents of the subpatch partial ~

For example, if we want a partial to have a frequency twice that of the fundamental we just
type in 2.0 as an argument (or send it in the second inlet). This way, if several partial ~
objects are receiving their fundamental frequency value (in the left inlet) from the same
source, their relative frequencies will stay the same even when the value of the fundamental
frequency changes.

Of course, for the sound to be very interesting, the amplitudes of the partials must evolve
with relative independence. Therefore, in the main patch, we control the amplitude of each
partial with its own envelope generator.



Tutorial 7 Synthesis: Additive synthesis

64 MSP Tutorial

Envelope generator: function

In Tutorial 3  you saw how to create an amplitude envelope by sending a list of pairs of
numbers to a line ~ object, thus giving it a succession of target values and transition times.
This idea of creating a control function from a series of line segments is useful in many
contexts—generating amplitude envelopes happens to be one particularly common usage—
and it is demonstrated in Tutorial 6, as well.

The function  object  is a great help in generating such line segment functions, because it
allows you to draw in the shape that you want, as well as define the function’s domain and
range (the numerical value of its dimensions on the x  and y  axes). You can draw a function
simply by clicking with the mouse where you want each breakpoint to appear. When
function  receives a bang, it sends a list of value-time pairs out its 2nd outlet. That list, when
used as input to the line ~ object, produces a changing signal that corresponds to the shape
drawn.

function  is a graphic function generator for a control signal when used with line ~

By the way, function  is also useful for non-signal purposes in Max. It can be used as an
interpolating lookup table. When it receives a number in its inlet, it considers that number
to be an x  value and it looks up the corresponding y  value in the drawn function
(interpolating between breakpoints as necessary) and sends it out the left outlet.

A variety of complex tones

Even with only six partials, one can make a variety of timbres ranging from “realistic”
instrument-like tones to clearly artificial combinations of frequencies. The settings for a few
different tones have been stored in a preset  object, for you to try them out. A brief
explanation of each tone is provided below.

• Click on the ezdac~ speaker icon to turn audio on. Click on the button to play a
tone. Click on one of the stored presets in the preset  object to change the settings,
then click the button again to hear the new tone.



Synthesis: Additive synthesis Tutorial 7

MSP Tutorial 65

Preset 1. This tone is not really meant to emulate a real instrument. It’s just a set of
harmonically related partials, each one of which has a different amplitude envelope. Notice
how the timbre of the tone changes slightly over the course of its duration as different
partials come to the foreground. (If you can’t really notice that change of timbre, try
changing the note’s duration to something longer, such as 8000 milliseconds, to hear the
note evolve more slowly.)

Preset 2. This tone sounds rather like a church organ. The partials are all octaves of the
fundamental, the attack is moderately fast but not percussive, and the amplitude of the tone
does not diminish much over the course of the note. You can see and hear that the upper
partials die away more quickly than the lower ones.

Preset 3. This tone consists of slightly mistuned harmonic partials. The attack is immediate
and the amplitude decays rather rapidly after the initial attack, giving the note a percussive
or plucked effect.

Preset 4. The amplitude envelopes for the partials in this tone are derived from an analysis of
a trumpet note in the lower register. Of course, these are only six of the many partials
present in a real trumpet sound.

Preset 5. The amplitude envelopes for the partials of this tone are derived from the same
trumpet analysis. However, in this case, only the odd-numbered harmonics are used. This
creates a tone more like a clarinet, because the cylindrical bore of a clarinet resonates the odd
harmonics. Also, the longer duration of this note slows down the entire envelope, giving it a
more characteristically clarinet-like attack.

Preset 6. This is a completely artificial tone. The lowest partial enters first, followed by the
sixth partial a semitone higher. Eventually the remaining partials enter, with frequencies
that lie between the first and sixth partial, creating a microtonal cluster. The beating effect is
due to the interference between these waves of slightly different frequency.

Preset 7. In this case the partials are spaced a major second apart, and the amplitude of each
partial rises and falls in such a way as to create a composite effect of an arpeggiated whole-
tone cluster. Although this is clearly a whole-tone chord rather than a single tone, the gradual
and overlapping attacks and decays cause the tones to fuse together fairly successfully.

Preset 8. In this tone the partials suggest a harmonic spectrum strongly enough that we still
get a sense of a fundamental pitch, but they are sufficiently mistuned that they resemble the
inharmonic spectrum of a bell. The percussive attack, rapid decay, and independently
varying partials during the sustain portion of the note are also all characteristic of a struck
metal bell.

Notice that when you are adding several signals together like this, their sum will often
exceed the amplitude limits of the dac~ object, so the over-all amplitude must be scaled
appropriately with a *~ object.



Tutorial 7 Synthesis: Additive synthesis

66 MSP Tutorial

Experiment with complex tones

• Using these tones as starting points, you may want to try designing your own tones
with this additive synthesis patch. Vary the tones by changing the fundamental
frequency, partials, and duration of the preset tones. You can also change the
envelopes by dragging on the breakpoints.

To draw a function in the function  object:

• Click in the function  object to create a new breakpoint. If you click and drag, the x
and y  coordinates of the point are shown in the upper portion of the object, and you
can immediately move the breakpoint to the position you want.

• Similarly, you can click and drag on any existing breakpoint to move it.

• Shift-click on an existing point to delete it.

Although not demonstrated in this tutorial, it is also possible to create, move, and delete
breakpoints in a function  just by using Max messages. See the description of function  in
the Objects  section of the manual for details.

The message setdomain, followed by a number, changes the scale of the x  axis in the
function  without changing the shape of the envelope. When you change the number in the
“Duration” number box , it sends a setdomain message to the function .

Summary

Additive synthesis  is the process of synthesizing new complex tones by adding tones
together. Since pure sine tones have energy at only one frequency, they are the fundamental
building blocks of additive synthesis, but of course any signals can be added together. The
sum signal may need to by scaled by some constant signal value less than 1 in order to keep it
from being clipped by the DAC.

In order for the timbre of a complex tone to remain the same when its pitch changes, each
partial must maintain its relationship to the fundamental frequency. Stating the frequency of
each partial in terms of a ratio to (i.e., a multiplier of) the fundamental frequency maintains
the tone’s spectrum even when the fundamental frequency changes.

In order for a complex tone to have an interesting timbre, the amplitude of the partials must
change with a certain degree of independence. The function  object allows you to draw
control shapes such as amplitude envelopes, and when function  receives a bang it describes
that shape to a line ~ object to generate a corresponding control signal.



Synthesis: Tremolo and ring modulation Tutorial 8

MSP Tutorial 67

Multiplying signals

In the previous chapter we added sine tones together to make a complex tone. In this chapter
we will see how a very different effect can be achieved by multiplying signals. Multiplying
one wave by another—i.e., multiplying their instantaneous amplitudes, sample by sample—
creates an effect known as ring modulation  (or, more generally, amplitude modulation).
“Modulation” in this case simply means change; the amplitude of one waveform is changed
continuously by the amplitude of another.

Technical detail :  Multiplication of waveforms in the time domain is equivalent to
convolution of waveforms in the frequency domain. One way to understand convolution is
as the superimposition of one spectrum on every frequency of another spectrum. Given two
spectra S1 and S2, each of which contains many different frequencies all at different
amplitudes, make a copy of S1 at the location of every frequency in S 2, with each copy scaled
by the amplitude of that particular frequency of S2.

Since a cosine wave has equal amplitude at both positive and negative frequencies, its
spectrum contains energy (equally divided) at both ƒ  and -ƒ. When convolved with another
cosine wave, then, a scaled copy of (both the positive and negative frequency components
of) the one wave is centered around both the positive and negative frequency components of
the other.

0 Hz 0 Hz 0 Hzƒ ƒ ƒ

a/2 a/2

a/4

S S1 2 S S1 2*
Spectrum S1, centered upon (and scaled by) each component of S2, results in S1 * S2

Multiplication in the time domain is equivalent to convolution in the frequency domain

So, in this simple case where each signal is a cosine wave, and thus each spectrum consists of
energy at only one frequency (positive and negative), the resulting spectrum consists of the
sum and the difference of the frequency of the two waves.

In our example patch, we multiply two sinusoidal tones. Ring modulation (multiplication)
can be performed with any  signals, and in fact the most sonically interesting uses of ring
modulation involve complex tones. However, we’ll stick to sine tones in this example for the
sake of simplicity, to allow you to hear clearly the effects of signal multiplication.

Simple multiplication of two cosine waves



Tutorial 8 Synthesis: Tremolo and ring modulation

68 MSP Tutorial

The tutorial patch contains two cycle ~ objects, and the outlet of each one is connected to one
of the inlets of a *~ object. However, the output of one of the cycle ~ objects is first scaled by
an additional *~ object, which provides control of the over-all amplitude of the result.
(Without this, the over-all amplitude of the product of the two cycle ~ objects would always
be 1.)

Product of two cosine waves (one with amplitude scaled beforehand)

Tremolo

When you first open the patch, a loadbang  object initializes the frequency and amplitude of
the oscillators. One oscillator is at an audio frequency of 1000 Hz. The other is at a sub-
audio frequency of 0.1 Hz (one cycle every ten seconds). The 1000 Hz tone is the one we
hear (this is termed the carrier oscillator), and it is modulated by the other wave (called the
modulator) such that we hear the amplitude of the 1000 Hz tone dip to 0 whenever the 0.1
Hz cosine goes to 0. (Twice per cycle, meaning once every five seconds.)

• Click on the ezdac~ to turn audio on. You will hear the amplitude of the 1000 Hz
tone rise and fall according to the cosine curve of the modulator, which completes
one full cycle every ten seconds. (When the modulator is negative, it inverts the
carrier, but we don’t hear the difference, so the effect is of two equivalent dips in
amplitude per modulation period.)

The amplitude is equal to the product of the two waves. Since the peak amplitude of the
carrier is 1, the over-all amplitude is equal to the amplitude of the modulator.

• Drag on the “Amplitude” number box  to adjust the sound to a comfortable level.
Click on the message  box containing the number 1 to change the modulator rate.

With the modulator rate set at 1, you hear the amplitude dip to 0 two times per second. Such
a periodic fluctuation in amplitude is known as tremolo. (Note that this is distinct from
vibrato , a term usually used to describe a periodic fluctuation in pitch or frequency.) The
perceived rate of tremolo is equal to two times the modulator rate, since the amplitude goes
to 0 twice per cycle. As described on the previous page, ring modulation produces the sum
and difference frequencies, so you’re actually hearing the frequencies 1001 Hz and 999 Hz,
and the 2 Hz beating due to the interference between those two frequencies.



Synthesis: Tremolo and ring modulation Tutorial 8

MSP Tutorial 69

• One at a time, click on the message  boxes containing 2 and 4. What tremolo rates
do you hear? The sound is still like a single tone of fluctuating amplitude because the
sum and difference tones are too close in frequency for you to separate them
successfully, but can you calculate what frequencies you’re actually hearing?

• Now try setting the rate of the modulator to 8 Hz, then 16 Hz.

In these cases the rate of tremolo borders on the audio range. We can no longer hear the
tremolo as distinct fluctuations, and the tremolo just adds a unique sort of “roughness” to the
sound. The sum and difference frequencies are now far enough apart that they no longer fuse
together in our perception as a single tone, but they still lie within what psychoacousticians
call the critical band. Within this critical band we have trouble hearing the two separate tones
as a pitch interval, presumably because they both affect the same region of our basilar
membrane.

Sidebands

• Try setting the rate of the modulator to 32 Hz, then 50 Hz.

At a modulation rate of 32 Hz, you can hear the two tones as a pitch interval (approximately
a minor second), but the sensation of roughness persists. With a modulation rate of 50 Hz,
the sum and difference frequencies are 1050 Hz and 950 Hz—a pitch interval almost as great
as a major second—and the roughness is mostly gone. You might also hear the tremolo rate
itself, as a tone at 100 Hz.

You can see that this type of modulation produces new frequencies not present in the carrier
and modulator tones. These additional frequencies, on either side of the carrier frequency,
are often called sidebands .

• Listen to the remaining modulation rates.

At certain modulation rates, all the sidebands are aligned in a harmonic relationship. With a
modulation rate of 200 Hz, for example, the tremolo rate is 400 Hz and the sum and
difference frequencies are 800 Hz and 1200 Hz. Similarly, with a modulation rate of 500 Hz,
the tremolo rate is 1000 Hz and the sum and difference frequencies are 500 Hz and 1500 Hz.
In these cases, the sidebands fuse together more tightly as a single complex tone.

• Experiment with other carrier and modulator frequencies by typing other values
into the number box es. When you have finished, click on ezdac ~ again to turn
audio off.

Summary

Multiplication of two digital signals is comparable to the analog audio technique known as
ring modulation . Ring modulation is a type of amplitude modulation—changing the
amplitude of one tone (termed the carrier) with the amplitude of another tone ( called the



Tutorial 8 Synthesis: Tremolo and ring modulation

70 MSP Tutorial

modulator). Multiplication of signals in the time domain is equivalent to convolution of
spectra in the frequency domain.

Multiplying an audio signal by a sub-audio signal results in regular fluctuations of amplitude
known as tremolo. Multiplication of signals creates sidebands—additional frequencies not
present in the original tones. Multiplying two sinusoidal tones produces energy at the sum
and difference of the two frequencies. This can create beating due to interference of waves
with similar frequencies, or can create a fused complex tone when the frequencies are
harmonically related. When two signals are multiplied, the output amplitude is determined
by the product of the carrier and modulator amplitudes.



Synthesis: Amplitude modulation Tutorial 9

MSP Tutorial 71

Ring modulation and amplitude modulation

Amplitude modulation (AM) involves changing the amplitude of a “carrier” signal using the
output of another “modulator” signal. In the specific AM case of ring modulation  (discussed
in Tutorial 8) the two signals are simply multiplied. In the more general case, the modulator
is used to alter the carrier’s amplitude, but is not the sole determinant of it. To put it another
way, the modulator can cause fluctuation of amplitude around some value other than 0. The
example below illustrates the difference between ring modulation and more common
amplitude modulation.

1

0

-1

0

1

-1

Ring modulation Amplitude modulation

The example on the left is 1/4 second of a 100 Hz cosine multiplied by a 4 Hz cosine; the
amplitude of both cosines is 1. In the example on the right, the 4 Hz cosine has an amplitude
of 0.25, which is used to vary the amplitude of the 100 Hz tone ±0.25 around 0.75 (going as
low as 0.5 and as high as 1.0). The two main differences are a) the AM example never goes
all the way to 0, whereas the ring modulation example does, and b) the ring modulation is
perceived as two amplitude dips per modulation period (thus creating a tremolo effect at
twice the rate of the modulation) whereas the AM is perceived as a single cosine fluctuation
per modulation period. The two MSP patches that made these examples are shown below.

 

Ring modulation Amplitude modulation

The difference in effect is due to the constant value of 0.75 in the AM patch, which is varied
by a modulator of lesser amplitude. This constant value can be thought of as the carrier’s
amplitude, which is varied by the instantaneous amplitude of the modulator. The amplitude
still varies according to the shape of the modulator, but the modulator is not centered on 0.



Tutorial 9 Synthesis: Amplitude modulation

72 MSP Tutorial

Technical detail :  The amount that a wave is offset from 0 is called the DC offset . A
constant amplitude value such as this represents spectral energy at the frequency 0
Hz. The modulator in AM has a DC offset, which distinguishes it from ring
modulation.

Implementing AM in MSP

The tutorial patch is designed in such a way that the DC offset of the modulator is always 1
minus the amplitude of its sinusoidal variation. That way, the peak amplitude of the
modulator is always 1, so the product of carrier and modulator is always 1. A separate *~
object is used to control the over-all amplitude of the sound.

The modulator is a sinusoid with a DC offset, which is multiplied by the carrier

• Click on the ezdac~ to turn audio on. Notice how the tremolo rate is the same as the
frequency of the modulator. Click on the message  boxes 2, 4, and 8 in turn to hear
different tremolo rates.

Achieving different AM effects

The primary merit of AM lies in the fact that the intensity of its effect can be varied by
changing the amplitude of the modulator.

• To hear a very slight tremolo effect, type the value 0.03 into the number box
marked “Tremolo Depth”. The modulator now varies around 0.97, from 1 to 0.94,
producing an amplitude variation of only about half a decibel. To hear an extreme



Synthesis: Amplitude modulation Tutorial 9

MSP Tutorial 73

tremolo effect, change the tremolo depth to 0.5; the modulator now varies from 1 to
0—the maximum modulation possible.

Amplitude modulation produces sidebands—additional frequencies not present in the
carrier or the modulator—equal to the sum and the difference of the frequencies present in
the carrier and modulator. The presence of a DC offset (technically energy at 0 Hz) in the
modulator means that the carrier tone remains present in the output, too (which is not the
case with ring modulation).

• Click on the message  boxes containing the numbers 32, 50, 100, and 150, in turn.
You will hear the carrier frequency, the modulator frequency (which is now in the
low end of the audio range), and the sum and difference frequencies.

When there is a harmonic relationship between the carrier and the modulator, the
frequencies produced belong to the harmonic series of a common fundamental, and tend to
fuse more as a single complex tone. For example, with a carrier frequency of 1000 Hz and a
modulator at 250 Hz, you will hear the frequencies 250 Hz, 750 Hz, 1000 Hz, and 1250
Hz— the 1st, 3rd, 4th, and 5th harmonics of the fundamental at 250 Hz.

• Click on the message  boxes containing the numbers 200, 250, and 500 in turn to
hear harmonic complex tones. Drag on the “Tremolo Depth” number box  to
change the depth value between 0. and 0.5, and listen to the effect on the relative
strength of the sidebands.

• Explore different possibilities by changing the values in the number box es. When
you have finished, click on the ezdac ~ to turn audio off.

It is worth noting that any audio signals can be used as the carrier and modulator tones, and
in fact many interesting results can be obtained by amplitude modulation with complex
tones. (Tutorial 22  allows you to perform amplitude modulation on the sound coming into
the computer.)

Summary

The amplitude of an audio (carrier) signal can be modulated by another (modulator) signal,
either by simple multiplication (ring modulation) or by adding a time-varying modulating
signal to a constant signal ( DC offset) before multiplying it with the carrier signal
(amplitude modulation). The intensity of the amplitude modulation can be controlled by
increasing or reducing the amplitude of the time-varying modulator relative to its DC
offset. When the modulator has a DC offset, the carrier frequency will remain present in the
output sound, along with sidebands at frequencies determined by the sum and the difference
of the carrier and the modulator. At sub-audio modulating frequencies, amplitude
modulation is heard as tremolo; at audio frequencies the carrier, modulator, and sidebands
are all heard as a chord or as a complex tone.



Tutorial 10 Synthesis: Vibrato and FM

74 MSP Tutorial

Basic FM in MSP

Frequency modulation (FM) is a change in the frequency of one signal caused by modulating
it with another signal. In the most common implementation, the frequency of a sinusoidal
carrier wave is varied continuously with the output of a sinusoidal modulating oscillator.
The modulator is added to the constant base frequency of the carrier.

Simple frequency modulation

The example above shows the basic configuration for FM. The frequency of the modulating
oscillator determines the rate of modulation, and the amplitude of the modulator determines
the “depth” (intensity) of the effect.

• Click on the ezdac ~ to turn audio on.

The sinusoidal movement of the modulator causes the frequency of the carrier to go as high
as 1015 Hz and as low as 885 Hz. This frequency variation completes six cycles per second,
so we hear a 6 Hz vibrato  centered around 1000 Hz. (Note that this is distinct from
tremolo, which is a fluctuation in amplitude, not frequency.)

• Drag upward on the number box  marked “Modulation Depth” to change the
amplitude of the modulator. The vibrato becomes wider and wider as the modulator
amplitude increases. Set the modulation depth to 500.

With such a drastic frequency modulation, one no longer really hears the carrier frequency.
The tone passes through 1000 Hz so fast that we don’t hear that as its frequency. Instead we
hear the extremes—500 Hz and 1500 Hz—because the output frequency actually spends
more time in those areas.

Note that 500 Hz is an octave below 1000 Hz, while 1500 Hz is only a perfect fifth above
1000 Hz. The interval between 500 Hz and 1500 Hz is thus a perfect 12th (as one would
expect, given their 1:3 ratio). So you can see that a vibrato of equal frequency variation
around a central frequency does not produce equal pitch variation above and below the
central pitch. (In Tutorial 17  we demonstrate how to make a vibrato that is equal in pitch up
and down.)

• Set the modulation depth to 1000. Now begin dragging the “Modulator Frequency”
number box  upward slowly to hear a variety of effects.



Synthesis: Vibrato and FM Tutorial 10

MSP Tutorial 75

As the modulator frequency approaches the audio range, you no longer hear individual
oscillations of the modulator. The modulation rate itself is heard as a low tone. As the
modulation frequency gets well into the audio range (at about 50 Hz), you begin to hear a
complex combination of sidebands produced by the FM process. The precise frequencies of
these sidebands depend on the relationship between the carrier and modulator frequencies.

• Drag the “Modulator Frequency” number box  all the way up to 1000. Notice that
the result is a rich harmonic tone with fundamental frequency of 1000 Hz. Try
typing in modulator frequencies of 500, 250, and 125 and note the change in
perceived fundamental.

In each of these cases, the perceived fundamental is the same as the modulator frequency. In
fact, though, it is not determined just by the modulator frequency, but rather by the
relationship between carrier frequency and modulator frequency. This will be examined
more in the next chapter.

• Type in 125 as the modulator frequency. Now drag up and down on the “Modulation
Depth” number box , making drastic changes. Notice that the pitch stays the same
but the timbre changes.

The timbre of an FM tone depends on the ratio of modulator amplitude to modulator
frequency. This, too, will be discussed more in the next chapter.

Summary

Frequency modulation (FM) is achieved by adding a time-varying signal to the constant
frequency of an oscillator. It is good for vibrato effects at sub-audio modulating frequencies,
and can produce a wide variety of timbres at audio modulating frequencies. The rich
complex tones created with FM contain many partials, even though only two oscillators are
needed to make the sound. This is a great improvement over additive synthesis, in terms of
computational efficiency.



Tutorial 11 Synthesis: Frequency modulation

76 MSP Tutorial

Elements of FM synthesis

Frequency modulation (FM) has proved to be a very versatile and effective means of
synthesizing a wide variety of musical tones. FM is very good for emulating acoustic
instruments, and for producing complex and unusual tones in a computationally efficient
manner.

Modulating the frequency of one wave with another wave generates many sidebands,
resulting in many more frequencies in the output sound than were present in the carrier and
modulator waves themselves. As was mentioned briefly in the previous chapter, the
frequencies of the sidebands are determined by the relationship between the carrier
frequency (Fc) and the modulator frequency (Fm); the relative strength of the different
sidebands (which affects the timbre) is determined by the relationship between the
modulator amplitude (Am) and the modulator frequency (Fm).

Because of these relationships, it’s possible to boil the control of FM synthesis down to two
crucial values, which are defined as ratios of the pertinent parameters. One important value
is the harmonicity ratio , defined as F m/F c ; this will determine what frequencies are present
in the output tone, and whether the frequencies have an harmonic or inharmonic
relationship. The second important value is the modulation index , defined as Am/F m; this
value affects the “brightness” of the timbre by affecting the relative strength of the partials.

Technical detail :  In John Chowning’s article “Synthesis of Complex Audio Spectra
by Means of Frequency Modulation” and in Curtis Roads’ Computer Music
Tutorial, they write about the ratio F c/F m. However, in F.R. Moore’s Elements of
Computer Music  he defines the term harmonicity ratio  as Fm/F c . The idea in all cases
is the same, to express the relationship between the carrier and modulator
frequencies as a ratio. In this tutorial we use Moore’s definition because that way
whenever the harmonicity ratio is an integer the result will be a harmonic tone with
Fc  as the fundamental.

The frequencies of the sidebands are determined by the sum and difference of the carrier
frequency plus and minus integer multiples of the modulator frequency. Thus, the
frequencies present in an FM tone will be F c , Fc+Fm, Fc-F m, Fc+2Fm, Fc-2F m, Fc+3Fm, Fc-
3F m, etc. This holds true even if the difference frequency turns out to be a negative number;
the negative frequencies are heard as if they were positive. The number and strength of
sidebands present is determined by the modulation index; the greater the index, the greater
the number of sidebands of significant energy.

An FM subpatch: simpleFM~

The simpleFM ~ object in this tutorial patch is not an MSP object; it’s a subpatch that
implements the ideas of harmonicity ratio and modulation index.

• Double-click on the simpleFM ~ subpatch object to see its contents.



Synthesis: Frequency modulation Tutorial 11

MSP Tutorial 77

The simpleFM ~ subpatch

The main asset of this subpatch is that it enables one to specify the carrier frequency,
harmonicity ratio, and modulation index, and it then calculates the necessary modulator
frequency and modulator amplitude (in the *~ objects) to generate the correct FM signal.
The subpatch is flexible in that it accepts either signals or numbers in its inlets, and the
harmonicity ratio and modulation index can be typed in as arguments in the main patch.

• Close the [simpleFM ~] window.

Producing different FM tones

In the main patch, the carrier frequency and harmonicity ratio are provided to simpleFM ~
as constant values, and the modulation index is provided as a time-varying signal generated
by the envelope in the function  object.

Providing values for the FM instrument

Because modulation index is the main determinant of timbre (brightness), and because the
timbre of most real sounds varies over time, the modulation index is a prime candidate to be
controlled by an envelope. This timbre envelope may or may not correspond exactly with the



Tutorial 11 Synthesis: Frequency modulation

78 MSP Tutorial

amplitude of the sound, so in the main patch one envelope is used to control amplitude, and
another to control brightness.

Over the course of the note, the timbre and the amplitude evolve independently

Each of the presets contains settings to produce a different kind of FM tone, as described
below.

• Turn audio on and click on the first preset in the preset  object to recall some
settings for the instrument. Click on the button  to play a note. To hear each of the
different preset tones, click on a different preset in the preset  object to recall the
settings for the instrument, then click on the button  to play a note.

Preset 1. The carrier frequency is for the pitch C an octave below middle C. The non-integer
value for the harmonicity ratio will cause an inharmonic set of partials. This inharmonic
spectrum, the steady drop in modulation index from bright to pure, and the long exponential
amplitude decay all combine to make a metallic bell-like tone.

Preset 2. This tone is similar to the first one, but with a (slightly mistuned) harmonic value
for the harmonicity ratio, so the tone is more like an electric piano.

Preset 3. An “irrational” (1 over the square root of 2) value for the harmonicity ratio, a low
modulation index, a short duration, and a characteristic envelope combine to give this tone a
quasi-pitched drum-like quality.

Preset 4. In brass instruments the brightness is closely correlated with the loudness. So, to
achieve a trumpet-like sound in this example the modulation index envelope essentially
tracks the amplitude envelope. The amplitude envelope is also characteristic of brass
instruments, with a slowish attack and little decay. The pitch is G above middle C, and the
harmonicity ratio is 1 for a fully harmonic spectrum.

Preset 5. On the trumpet, a higher note generally requires a more forceful attack; so the
same envelope applied to a shorter duration, and a carrier frequency for the pitch high C,
emulate a staccato high trumpet note.



Synthesis: Frequency modulation Tutorial 11

MSP Tutorial 79

Preset 6. The same pitch and harmonicity, but with a percussive attack and a low modulation
index, give a xylophone sound.

Preset 7. A harmonicity ratio of 4 gives a spectrum that emphasizes odd harmonics. This,
combined with a low modulation index and a slow attack, produces a clarinet-like tone.

Preset 8. Of course, the real fun of FM synthesis is the surreal timbres you can make by
choosing unorthodox values for the different parameters. Here, an extreme and wildly
fluctuating modulation index produces a sound unlike that produced by any acoustic object.

• You can experiment with your own envelopes and settings to discover new FM
sounds. When you have finished, click on the ezdac ~ to turn audio off.

As with amplitude modulation, frequency modulation can also be performed using complex
tones. Sinusoids have traditionally been used most because they give the most predictable
results, but many other interesting sounds can be obtained by using complex tones for the
carrier and modulator signals.

Summary

FM synthesis is an effective technique for emulating acoustic instrumental sounds as well as
for generating unusual new sounds.

The frequencies present in an FM tone are equal to the carrier frequency plus and minus
integer multiples of the modulator frequency. Therefore, the harmonicity of the tone can be
described by a single number—the ratio of the modulator and carrier frequencies—
sometimes called the harmonicity ratio . The relative amplitude of the partials is dependent
on the ratio of the modulator’s amplitude to its frequency, known as the modulation index .

In most acoustic instruments, the timbre changes over the course of a note, so envelope
control of the modulation index is appropriate for producing interesting sounds. A non-
integer harmonicity ratio yields an inharmonic spectrum, and when combined with a
percussive amplitude envelope can produce drum-like and bell-like sounds. An integer
harmonicity ratio combined with the proper modulation index envelope and amplitude
envelope can produce a variety of pitched instrument sounds.



Tutorial 12 Synthesis: Waveshaping

80 MSP Tutorial

Using a stored wavetable

In Tutorial 3  we used 512 samples stored in a buffer ~ as a wavetable to be read by the
cycle ~ object. The name of the buffer ~ object is typed in as an argument to the cycle ~
object, causing cycle ~ to use samples from the buffer ~ as its waveform, instead of its
default cosine wave. The frequency value received in the left inlet of the cycle ~ determines
how many times per second it will read through those 512 samples, and thus determines the
fundamental frequency of the tone it plays.

Just to serve as a reminder, an example of that type of wavetable synthesis is included in the
lower right corner of this tutorial patch.

The cycle ~ object reads repeatedly through the 512 samples stored in the buffer ~

• Double-click on the buffer ~ object to see its contents. The file gtr512.aiff  contains
one cycle of a recorded electric guitar note. Click on the ezdac~ speaker icon to turn
audio on. Click on the toggle  to open the gate~, allowing the output of cycle ~ to
reach the dac~. Click on the toggle  again to close the gate ~.

This type of synthesis allows you to use any waveform for cycle ~, but the timbre is static
and somewhat lifeless because the waveform is unchanging. This tutorial presents a new way
to obtain dynamically changing timbres, using a technique known as waveshaping.

Table lookup: lookup~

In waveshaping synthesis  an audio signal—most commonly a sine wave—is used to access a
lookup table containing some shaping function (also commonly called a transfer function).
Each sample value of the input signal is used as an index to look up a value stored in a table
(an array of numbers). Because a lookup table may contain any values in any order, it is
useful for mapping a linear range of values (such as the signal range -1 to 1) to a nonlinear
function (whatever is stored in the lookup table). The Max object table  is an example of a
lookup table; the number received as input (commonly in the range 0 to 127) is used to
access whatever values are stored in the table .

The MSP object lookup ~ allows you to use samples stored in a buffer ~ as a lookup table
which can be accessed by a signal in the range -1 to 1. By default, lookup ~ uses the first 512
samples in a buffer ~, but you can type in arguments to specify any excerpt of the buffer ~’s
contents for use as a lookup table. If 512 samples are used, input values ranging from -1 to 0
are mapped to the first 256 samples, and input values from 0 to 1 are mapped to the next 256
samples; lookup ~ interpolates between two stored values as necessary.



Synthesis: Waveshaping Tutorial 12

MSP Tutorial 81

Sine wave used to read back and forth through an excerpt of the buffer ~

The most commonly used input signal for indexing the lookup table is a sine wave—it’s a
reasonable choice because it reads smoothly back and forth through the table—but any audio
signal can be used as input to lookup ~.

The important thing to observe about waveshaping synthesis is this: changing the amplitude
of the input signal changes the amount of the lookup table that gets used. If the range of the
input signal is from -1 to 1, the entire lookup table is used. However, if the range of the
input signal is from -0.33 to 0.33, only the middle third of the table is used. As a general
rule, the timbre of the output signal becomes brighter (contains more high frequencies) as
the amplitude of the input signal increases.

It’s also worth noting that the amplitude of the input signal has no direct effect on the
amplitude of the output signal; the output amplitude depends entirely on the values being
indexed in the lookup table.

Varying timbre with waveshaping

The waveshaping part of the tutorial patch is in the lower left portion of the Patcher window.
It’s very similar to the example shown above. The lookup table consists of the 512 samples in
the buffer ~, and it is read by a cosine wave from a cycle ~ object.

Lookup table used for waveshaping

The upper portion of the Patcher window contains three different ways to vary the
amplitude of the cosine wave, which will vary the timbre.



Tutorial 12 Synthesis: Waveshaping

82 MSP Tutorial

• With the audio still on, choose “Set range by hand” from the pop-up umenu . This
opens the first signal inlet of the selector ~, so you can alter the amplitude of the
cycle ~ by dragging in the number box  marked “By hand”. Change the value in the
number box  to hear different timbres.

Set the amplitude of the input signal to change the timbre of the output

To make the timbre change over the course of the note, you can use a control function
envelope to vary the amplitude of the cycle ~ automatically over time.

• Choose “Control range by envelope” from the umenu . Set a note duration by typing
a value into the number box  marked “Duration” (such as 1000 ms), then click on
the button  to play a note. Experiment with different durations and envelopes.

You can also modulate the amplitude of the input wave with another signal. An extremely
slow modulating frequency (such as 0.1 Hz) will change the timbre very gradually. A faster
sub-audio modulating frequency (such as 8 Hz) will create a unique sort of “timbre
tremolo”. Modulating the input wave at an audio rate creates sum and difference frequencies
(as you have seen in Tutorial 9) which may interfere in various ways depending on the
modulation rate.

• Choose “Modulate range by wave” from the umenu . Set the modulation rate to 0.1
Hz and set the modulation depth to 0.9.

Very slow modulation of the input wave’s amplitude creates a gradual timbre change

Notice that the amplitude of the cycle ~ is multiplied by 0.45 and offset by 0.5. That makes
it range from 0.05 to 0.95. (If it went completely to 0 the amplitude of the wave it’s



Synthesis: Waveshaping Tutorial 12

MSP Tutorial 83

modulating would be 0 and the sound would stop.) The “Modulation depth” number box
goes from 0 to 1, but it’s actually scaling the cycle ~ within that range from 0.05 to 0.95.

• Experiment with other values for the depth and rate of modulation.

If you’re designing an instrument for musical purposes, you might use some combination
of these three ways to vary the timbre, and you almost certainly would have an independent
amplitude envelope to scale the amplitude of the output sound. (Remember that the
amplitude of the signal coming out of lookup ~ depends on the sample values being read, and
is not directly affected by the amplitude of the signal coming into it.)

Summary

Waveshaping  is the nonlinear distortion of a signal to create a new timbre. The sample
values of the original signal are used to address a lookup table, and the corresponding value
from the lookup table is sent out. The lookup ~ object treats samples from a buffer ~ as such
a lookup table, and uses the input range -1 to 1 to address those samples. A sine wave is
commonly used as the input signal for waveshaping synthesis. The amplitude of the input
signal determines how much of the lookup table gets used. As the amplitude of the input
signal increases, more of the table gets used, and consequently more frequencies are
generally introduced into the output. Thus, you can change the timbre of a waveshaped
signal dynamically by continuously altering the amplitude of the input signal, using a control
function or a modulating signal.



Tutorial 13 Sampling: Recording and playback

84 MSP Tutorial

Sound input: adc~

For getting sound from the “real world” into MSP, there is an analog-to-digital conversion
object called adc~. It recognizes all the same messages as the dac~ object, but instead of
sending signal to the audio output jacks of the computer, adc~ receives signal from the
audio input jacks, and sends the incoming signal out its outlets. Just as dac~ has a user
interface version called ezdac ~, there is an iconic version of adc~ called ezadc ~.

adc~ and ezadc ~ get sound from the audio input jacks and send it out as a signal

To use the adc~ object, you need to send sound from some source into the computer. The
sound may come from the CD player of your computer, from any line level source such as a
tape player, or from a microphone—either a Macintosh microphone, or a standard
microphone via a preamplifier.

• Double click on the adc~ object to open the DSP Status window. Make sure that the
Input Source  popup menu displays the input source you want. In most cases you’ll
have the choice of Internal CD or Microphone (meaning whatever is coming in the
input jacks). If you’re using an audio card and one of the MSP audio drivers, you
will not have a choice of input source. Close the DSP Status window.

• Click on the toggle above the adc~ object to turn audio on. If you want to hear the
input sound played directly out the output jacks, adjust the number box marked
Audio thruput level.

Adjust the audio thruput to a comfortable listening level

If your input source is a microphone, you’ll need to be careful not to let the output sound
from your computer feed back into the microphone.



Sampling: Recording and playback Tutorial 13

MSP Tutorial 85

Recording a sound: record~

To record a sample of the incoming sound (or any signal), you first need to designate a
buffer in which the sound will be stored. Your patch should therefore include at least one
buffer ~ object. You also need a record ~ object with the same name as the buffer ~. The
sound that you want to record must go in the inlet of the record ~ object.

Record two seconds of stereo sound into the buffer ~ named soundbite

When record ~ receives a non-zero int in its left inlet, it begins recording the signals
connected to its record inlets; 0 stops the recording. You can specify recording start and end
points within the buffer ~ by sending numbers in the two right inlets of record ~. If you
don’t specify start and end points, recording will fill the entire buffer ~. Notice that the
length of the recording is limited by the length of the buffer ~. If this were not the case, there
would be the risk that record ~ might be left on accidentally and fill the entire application
memory.

In the tutorial patch, record ~ will stop recording after 2 seconds (2000 ms). We have
included a delayed bang to turn off the toggle  after two seconds, but this is just to make the
toggle  accurately display the state of record ~. It is not necessary to stop record ~
explicitly, because it will stop automatically when it reaches its end point or the end of the
buffer ~.

A delayed bang turns off the toggle  after two seconds so it will display correctly

• Make sure that you have sound coming into the computer, then click on the toggle
to record two seconds of the incoming sound. If you want to, you can double-click
on the buffer ~ afterward to see the recorded signal.

Reading through a buffer~: index~

So far you have seen two ways to get sound into a buffer ~. You can read in an existing AIFF
or Sound Designer II  file with the read message, and you can record sound into it with the



Tutorial 13 Sampling: Recording and playback

86 MSP Tutorial

record ~ object. Once you get the sound into a buffer ~, there are several things you can do
with it. You can save it to a sound file by sending the write message to the buffer ~. You can
use 513 samples of it as a wavetable for cycle ~, as demonstrated in Tutorial 3. You can use
any section of it as a transfer function for lookup ~, as demonstrated in Tutorial 12 . You can
also just read straight through it to play it out the dac~. This tutorial patch demonstrates the
two most basic ways to play the sound in a buffer ~. A third way is demonstrated in Tutorial
14 .

The index ~ object receives a signal as its input, which represents a sample number. It looks
up that sample in its associated buffer ~, and sends the value of that sample out its outlet as a
signal. The count ~ object just sends out a signal value that increases by one with each
sample. So, if you send the output of count ~—a steady stream of increasing numbers—to
the input of index ~—which will treat them as sample numbers— index ~ will read straight
through the buffer ~, playing it back at the current sampling rate.

Play the sound in a buffer ~ by looking up each sample and sending it to the dac ~

• Click on the button  marked “Play” to play the sound in the buffer ~. You can change
the starting sample number by sending a different starting number into count ~.

This combination of count ~ and index ~ lets you specify a precise sample number in the
buffer ~ where you want to start playback. However, if you want to specify starting and
ending points in the buffer ~ in terms of milliseconds, and/or you want to play the sound
back at a different speed—or even backward—then the play ~ object is more appropriate.

Variable speed playback: play~

The play ~ object receives a signal in its inlet which indicates a position, in milliseconds, in
its associated buffer ~; play ~ sends out the signal value it finds at that point in the buffer ~.
Unlike index ~, though, when play ~ receives a position that falls between two samples in the
buffer ~ it interpolates between those two values. For this reason, you can read through a
buffer ~ at any speed by sending an increasing or decreasing signal to play ~, and it will
interpolate between samples as necessary. (Theoretically, you could use index ~ in a similar



Sampling: Recording and playback Tutorial 13

MSP Tutorial 87

manner, but it does not interpolate between samples so the sound fidelity would be
considerably worse.)

The most obvious way to use the play ~ object is to send it a linearly increasing (or
decreasing) signal from a line ~ object, as shown in the tutorial patch.

Read through a buffer ~, from one position to another, in a given amount of time

Reading from 0 to 2000 (millisecond position in the buffer ~) in a time of 2000 ms
produces normal playback. Reading from 0 to 2000 in 4000 ms produces half-speed
playback, and so on.

• Click on the different message box es to hear the sound played in various
speed/direction combinations. Turn audio off when you have finished.

Although not demonstrated in this tutorial patch, it’s worth noting that you could use other
signals as input to play ~ in order to achieve accelerations and decelerations, such as an
exponential curve from a curve ~ object or even an appropriately scaled sinusoid from a
cycle ~ object.

Summary

Sound coming into the computer enters MSP via the adc~ object. The record ~ object stores
the incoming sound—or any other signal—in a buffer ~. You can record into the entire
buffer ~, or you can record into any portion of it by specifying start and end buffer
positions in the two rightmost inlets of record ~. For simple normal-speed playback of the
sound in a buffer ~, you can use the count ~ and index ~ objects to read through it at the
current sampling rate. Use the line ~ and play ~ objects for variable-speed playback and/or
for reading through the buffer ~ in both directions.



Tutorial 14 Sampling: Playback with loops

88 MSP Tutorial

Playing samples with groove~

The groove ~ object is the most versatile object for playing sound from a buffer ~. You can
specify the buffer ~ to read, the starting point, the playback speed (either forward or
backward), and starting and ending points for a repeating loop within the sample. As with
other objects that read from a buffer ~, groove ~ accesses the buffer ~ remotely, without
patch cords, by sharing its name.

A standard configuration for the use of groove ~

In the example above, the message loop 1 turns looping on, the start time of 0 ms indicates
the beginning of the buffer ~, the playback speed of 1 means to play forward at normal
speed, and the loop start and end times mean that (because looping is turned on) when
groove ~ reaches a point 860 milliseconds into the buffer ~ it will return to a point 572 ms
into the buffer ~ and continue playing from there. Notice that the start time must be
received as a float (or int), and the playback speed must be received as a signal. This means
the speed can be varied continuously by sending a time-varying signal in the left inlet.

Whenever a new start time is received, groove ~ goes immediately to that time in the
buffer ~ and continues playing from there at the current speed. When groove ~ receives the
message loop 1 or startloop it goes to the beginning of the loop and begins playing at the
current speed. (Note that loop points are ignored when groove ~ is playing in reverse, so
this does not work when the playback speed is negative.) groove ~ stops when it reaches the
end of the buffer ~ (or the beginning if it’s playing backward), or when it receives a speed of
0.

In the tutorial patch, three different buffer ~ objects are loaded with AIFF files so that a single
groove ~ object can switch between various samples instantly. The message set, followed by
the name of a buffer ~, refers groove ~ to that new buffer ~ immediately. (If groove ~
always referred to the same buffer ~, and we used read messages to change the contents of
the buffer ~, some time would be needed to open and load each new file.)

Refer groove ~ to a different buffer ~ with a set message



Sampling: Playback with loops Tutorial 14

MSP Tutorial 89

• Click on the preset  object to play the samples in different ways.

The first preset just functions as an “Off” button. The next three presets play the three
buffer ~s at normal speed without looping. The rest of the presets demonstrate a variety of
sound possibilities using different playback speeds on different excerpts of the buffered files,
with or without looping.

• You may want to experiment with your own settings by changing the user interface
objects directly.

You can control all aspects of the playback by changing the user interface object settings

Smooth undetectable loops are difficult to achieve with groove ~. Most commercial
synthesizers perform a crossfade between the end of a loop and the beginning of the next
pass through the loop, to smooth out the transition back to the start point. The looping
mode of groove ~ does not perform a crossfade, so it is better suited for the rhythmic
repetitive effects demonstrated here. However, if the buffer ~ contains an AIFF file that has
its own loop points—points established in a separate audio editing program—there is a way
to use those loop points to set the loop points of groove ~. The info ~ object can report the
loop points of an AIFF file contained in a buffer ~, and you can send those loop start and end
times directly into groove ~.

Using info ~ to get loop point information from an AIFF file

Summary

The groove ~ object is the most versatile way to play sound from a buffer ~. You can specify
the buffer ~ to read, the starting point, the playback speed (either forward or backward),
and starting and ending points for a repeating loop within the sample. If the buffer ~
contains an AIFF file that has its own pre-established loop points, you can use the info ~
object to get those loop times and send them to groove ~. The playback speed of groove ~  is
determined by the value of the signal coming in its left inlet. You can set the current buffer
position of groove ~ by sending a float time value in the left inlet.



Tutorial 15 Sampling: Variable-length wavetable

90 MSP Tutorial

Use any part of a buffer~ as a wavetable: wave~

As was shown in Tutorial 3, the cycle ~ object can use 512 samples of a buffer ~  as a
wavetable through which it reads repeatedly to play a periodically repeating tone. The wave~
object is an extension of that idea; it allows you to use any section of a buffer ~  as a
wavetable.

The starting and ending points within the buffer ~ are determined by the number or signal
received in the middle and right inlets of wave ~. As a signal in the wave ~ object’s left inlet
goes from 0 to 1, wave ~ sends out the contents of the buffer ~ from the specified start point
to the end point. The phasor ~ object, ramping repeatedly from 0 to 1, is the obvious choice
as an input signal for the left inlet of wave ~.

phasor ~  drives wave ~ through the section of the buffer ~ specified as the wavetable

In a standard implementation of wavetable synthesis, the wavetable (512 samples in the case
of cycle ~, or a section of any length in the case of wave ~) would be one single cycle of a
waveform, and the frequency of the cycle ~ object (or the phasor ~ driving the wave ~)
would determine the fundamental frequency of the tone. In the case of wave ~, however, the
wavetable could contain virtually anything (an entire spoken sentence, for example).

wave~ yields rather unpredictable results compared to some of the more traditional sound
generation ideas presented so far, but with some experimentation you can find a great
variety of timbres using wave ~. In this tutorial patch, you will see some ways of reading the
contents of a buffer ~ with wave ~.

Synthesis with a segment of sampled sound

The tutorial patch is designed to let you try three different ways of driving wave ~: with a
repeating ramp signal (phasor ~), a sinusoid (cycle ~), or a single ramp ( line ~). The
bottom part of the Patcher window is devoted to the basic implementation of wave~, and
the upper part of the window contains the three methods of reading through the wavetable.
First, let’s look at the bottom half of the window.



Sampling: Variable-length wavetable Tutorial 15

MSP Tutorial 91

wave ~ can use an excerpt of any length from either buffer ~ as its wavetable

• Click on the toggle  to turn audio on. Set the amplitude to some level greater than 0.
Set the end time of the wavetable to 782 (the length in milliseconds of the file
isthatyou.aiff).

With these settings, wave ~ will use the entire contents of buffer ~ words isthatyou.aiff as its
wavetable. Now we are ready to read through the wavetable.

• Choose “Read forward” from the pop-up umenu  in the middle of the window. This
will open the first signal inlet of the selector ~, allowing wave~ to be controlled by
the phasor ~ object.

Read through wave ~ by going repeatedly from 0 to 1 with a phasor ~ object

• Set the number box  marked “Range” to 1. This sets the amplitude of the phasor ~,
so it effectively determines what fraction of the wavetable will be used. Set the
number box  marked “Frequency” to 2. The phasor ~ now goes from 0 to 1 two
times per second, so you should hear wave ~ reading through the buffer ~ every half
second.

• Try a few different sub-audio frequency values for the phasor ~, to read through the
buffer ~ at different speeds. You can change the portion of the buffer ~ being read,



Tutorial 15 Sampling: Variable-length wavetable

92 MSP Tutorial

either by changing the “Range” value, or by changing the start and end times of the
wave ~. Try audio frequencies for the phasor ~ as well.

Notice that the rate of the phasor ~ often has no obvious relationship to the perceived pitch,
because the contents of the wavetable do not represent a single cycle of a waveform.
Furthermore, such rapid repetition of an arbitrarily selected segment of a complex sample
has a very high likelihood of producing frequencies well in excess of the Nyquist rate, which
will be folded back into the audible range in unpredictable ways.

• Click on the message  box to refer wave ~ to the buffer ~ chords object.

This changes the contents of the wavetable (because wave~ now accesses a different
buffer ~), and sets the maximum value of the “End time” number box  equal to the length of
the file sacre.aiff. Notice an additional little programming trick—shown in the example
below—employed to prevent the user from entering inappropriate start and end times for
wave ~.

Each time the start or end time is changed, it revises the limits of the other number box

• With this new buffer ~, experiment further by reading different length segments of
the buffer ~ at various rates.

Using wave~ as a transfer function

The buffer ~ object is essentially a lookup table that can be accessed in different ways by
other objects. In Tutorial 12  the lookup ~ object was used to treat a segment of a buffer ~ as a
transfer function, with a cosine wave as its input. The wave ~ object can be used similarly.
The only difference is that its input must range from 0 to 1, whereas lookup ~ expects input
in the range from -1 to 1. To use wave ~ in this way, then, we must scale and offset the
incoming cosine wave so that it ranges from 0 to 1.

• Set the start and end times of wave~ close together, so that only a few milliseconds of
sound are being used for the wavetable. Choose “Read back and forth” from the pop-
up umenu  in the middle of the window. This opens the second signal inlet of the
selector ~, allowing wave~ to be controlled by the cycle ~ object.



Sampling: Variable-length wavetable Tutorial 15

MSP Tutorial 93

cycle ~, scaled and offset to range from 0 to 1, reads back and forth in the wavetable

• Set the “Range” number box  to a very small value such as 0.01 at first, to limit
cycle ~’s amplitude. This way, cycle ~ will use a very small segment of the wavetable
as the transfer function. Set the frequency of cycle ~ to 220 Hz. You will probably
hear a rich tone with a fundamental frequency of 220 Hz. Drag on the “Range”
number box  to change the amplitude of the cosine wave; the timbre will change
accordingly. You can also experiment with different wavetable lengths by changing
the start and end times of wave ~. Sub-audio frequencies for the cycle ~ object will
produce unusual vibrato-like effects as it scans back and forth through the wavetable.

Play the segment as a note

Because wave~ accepts any signal input in the rage 0 to 1, you can read through the
wavetable just once by sending wave ~ a ramp signal from 0 to 1 (or backward, from 1 to 0).
Other objects such as play ~ and groove ~ are better suited for this purpose, but it is
nevertheless possible with wave ~.

• Choose “Read once” from the pop-up umenu  in the middle of the window. This
opens the third signal inlet of the selector ~, allowing wave~ to be controlled by the
line ~ object. Set start and end times for your wavetable, set the “Duration” number
box  to 1000, and click on the button  to traverse the wavetable in one second.
Experiment with both buffer ~ objects, using various wavetable lengths and
durations.

Changing the wavetable dynamically

The cycle ~ object in the right part of the Patcher window is used to add a sinusoidal
position change to the wavetable. As the cosine wave rises and falls, the start and end times
of the wavetable increase and decrease. As a result, the wavetable is constantly shifting its
position in the buffer ~, in a sinusoidally varying manner. Sonically this produces a unique
sort of vibrato, not of fundamental frequency but of timbre. The wavetable length and the
rate at which it is being read stay the same, but the wavetable’s contents are continually
changing.



Tutorial 15 Sampling: Variable-length wavetable

94 MSP Tutorial

Shifting the wavetable by adding a sinusoidal offset to the start and end times

• Set the “Shift amount” to 0.35, and set the “Shift rate” to 6. Set the start time of the
wavetable to 102 and the end time to 109. Click on the message  box to refer wave ~
to the buffer ~ chords object. Choose “Read forward” from the pop-up umenu . Set
the frequency of the phasor ~ to an audio rate such as 110, and set its range to 1. You
should hear a vibrato-like timbre change at the rate of 6 Hz. Experiment with
varying the shift rate and the shift amount. When you are done, click on the toggle
to turn audio off.

Summary

Any segment of the contents of a buffer ~ can be used as a wavetable for the wave ~ object.
You can read through the wavetable by sending a signal to wave ~ that goes from 0 to 1. So,
by connecting the output of a phasor ~ object to the input of wave ~, you can read through
the wavetable repeatedly at a sub-audio or audio rate. You can also scale and offset the output
of a cycle ~ object so that it is in the range 0 to 1, and use that as input to wave ~. This treats
the wavetable as a transfer function, and results in waveshaping synthesis. The position of
the wavetable in the buffer ~ can be varied dynamically—by adding a sinusoidal offset to the
start and end times of wave~, for example—resulting in unique sorts of timbre modulation.



Sampling: Record and play sound files Tutorial 16

MSP Tutorial 95

Playing from memory vs. playing from disk

You have already seen how to store sound in memory—in a buffer ~—by recording into it
directly or by reading in a pre-recorded AIFF or Sound Designer II file. Once the sound is in
memory, it can be accessed in a variety of ways with cycle ~, lookup ~, index ~, play ~,
groove ~, wave ~, etc.

The main limitation of buffer ~ for storing samples, of course, is the amount of unused
RAM available to the Max application. You can only store as much sound in memory as you
have memory to hold it. For playing and recording very large amounts of audio data, it is
more reasonable to use the hard disk for storage. But it takes more time to access the hard
disk than to access RAM; therefore, even when playing from the hard disk, MSP still needs
to create a small buffer to preload some of the sound into memory. That way, MSP can play
the preloaded sound while it is getting more sound from the hard disk, without undue delay
or discontinuities due to the time needed to access the disk.

In MSP, playing sound files from disk is appropriate only for forward playback at normal
speed, but you still have very flexible control over what file you play, what portion of the file
you play, and when you play it.

Record sound files: sfrecord~

MSP has objects for recording directly into, and playing directly from, an AIFF file:
sfrecord ~ and sfplay ~. Recording a sound file is particularly easy, you just open a file,
begin recording, and stop recording. (You don’t even need to close the file; sfrecord ~ takes
care of that for you.) In the upper right corner of the Patcher window there is a patch for
recording files.

Recording audio into a sound file on disk

sfrecord ~ records to disk whatever signal data it receives in its inlets. The signal data can
come directly from an adc ~ or ezadc ~ object, or from any other MSP object.

• Click on the message  box marked “Create an AIFF file”. You will be shown a dialog
box for naming your file. (Make sure you save the file on a volume with sufficient
free space.) Navigate to the folder where you want to store the sound, name the file,
and click Save. Turn audio on. Click on the toggle  to begin recording; click on it
again when you have finished.



Tutorial 16 Sampling: Record and play sound files

96 MSP Tutorial

Play sound files: sfplay~

In the left part of the Patcher window there is a patch for playing sound files. The basic usage
of sfplay ~ requires only a few objects, as shown in the following example. To play a file, you
just have to open it and start sfplay ~. The audio output of sfplay ~ can be sent directly to
dac ~ or ezdac ~, and/or anywhere else in MSP.

Simple implementation of sound file playback

 • Click on the open message  box marked “Set the current file”, and open the
soundfile you have just recorded. Then (with audio on) click on the toggle  marked
“Play/Stop” to hear your file.

Play excerpts on cue

Because sfplay ~ does not need to load an entire sound file into memory, you can actually
have many files open in the same sfplay ~ object, and play any of them (or any portion of
them) on cue. The most recently opened file is considered by sfplay ~ to be the “current” file,
and that is the file it will play when it receives the message 1.

• Click on the remaining open message  boxes to open some other sound files, and
then click on the message  box marked “Define cues, 2 to 9”.

The preload message to sfplay ~ specifies an entire file or a portion of a file, and assigns it a
cue number. From then on, every time sfplay ~ receives that number, it will play that cue. In
the example patch, cues 2, 3, and 4 play entire files, cue 5 plays the first 270 milliseconds of
sacre.aiff, and so on. Cue 1 is always reserved for playing the current (most recently
opened) file, and cue 0 is reserved for stopping sfplay ~.

Whenever sfplay ~ receives a cue, it stops whatever it is playing and immediately plays the
new cue. (You can also send sfplay ~ a queue of cues, by sending it a list of numbers, and it
will play each cue in succession.) Each preload message actually creates a small buffer
containing the audio data for the beginning of the cue, so playback can start immediately
upon receipt of the cue number.

Now that cues 0 through 9 are defined, you can play different audio excerpts by sending
sfplay ~ those numbers. The upper-left portion of the patch permits you to type those
numbers directly from the Macintosh keyboard.



Sampling: Record and play sound files Tutorial 16

MSP Tutorial 97

ASCII codes from the number keys used to send cues to sfplay ~

• Click on the toggle marked “Keyplay On/Off”. Type number keys to play the
different pre-defined cues. Turn “Keyplay” off when you are done.

Try different file excerpts

Before you define a cue, you will probably need to listen to segments of the file to determine
the precise start and end times you want. You can use the seek message to hear any segment
of the current file.

• Open your own sound file again (or any other sound file) to make it the current file.
In the right portion of this patch, enter an end time for the seek message. The
excerpt you have specified will begin playing. Try different start and end times.

Once you find start and end times you like, you could use them in a preload message to
establish a cue. Because sfplay ~ can’t know in advance what excerpt it will be required to
play in response to a seek message, it can’t preload the excerpt. There will be a slight delay
while it accesses the hard disk before it begins playing. For that reason, seek is best used as
an auditioning tool; preloaded cues are better for performance situations where immediate
playback is more critical.

Trigger an event at the end of a file

The patch in the lower right portion of the Patcher window demonstrates the use of the right
outlet of sfplay ~. When a cue is done playing (or when it is stopped with a 0 message),
sfplay ~ sends a bang out the right outlet. In this example patch, the bang is used to trigger
the next (randomly chosen) cue, so sfplay ~ effectively restarts itself when each cue is done.



Tutorial 16 Sampling: Record and play sound files

98 MSP Tutorial

When a cue is completed, sfplay ~ triggers the next cue

Note the importance of the gate  object in this patch. If it were not present, there would be
no way to stop sfplay ~ because each 0 cue would trigger another non-zero cue. The gate
must be closed before the 0 cue is sent to sfplay ~.

• In the patch marked “Play random excerpts”, click on the message  box to preload
the cues, then click on the toggle  to start the process. To stop it, click on the toggle
again. Turn audio off.

Summary

For large and/or numerous audio samples, it is often better to read the samples from the hard
disk than to try to load them all into RAM. The objects sfrecord ~ and sfplay ~ provide a
simple way to record and play sound files to and from the hard disk. The sfplay ~ object can
have many sound files open at once. Using the preload message, you can pre-define ready
cues for playing specific files or sections of files. The seek message to sfplay ~ lets you try
different start and end points for a cue. When a cue is done playing (or is stopped) sfplay ~
sends a bang out its right outlet. This bang can be used to trigger other processes, including
sending sfplay ~ its next cue.



Sampling: Review Tutorial 17

MSP Tutorial 99

A sampling exercise

In this chapter we suggest an exercise to help you check your understanding of how to
sample and play audio. Try completing this exercise in a new file of your own before you
check the solution given in the example patch. (But don’t have the example Patcher open
while you design your own patch, or you will hear both patches when you turn audio on.)
The exercise is to design a patch in which:

• Typing the a key on the Macintosh keyboard turns audio on. Typing a again toggles
audio off.

• Typing r  on the Macintosh keyboard makes a one-second recording of whatever
audio is coming into the computer (from the input jacks or from the internal CD
player).

• Typing p  plays the recording. Playback is to be at half speed, so that the sound lasts
two seconds.

• An amplitude envelope is applied to the sample when it is played, tapering the
amplitude slightly at the beginning and end so that there are no sudden clicks heard at
either end of the sample.

• The sample is played back with a 3 Hz vibrato added to it. The depth of the vibrato is
one semitone (a factor of 2±1/12) up and down.

Hints

Because you need to play the sample back at half-speed, sfplay ~ (which only plays at normal
speed) is not the correct choice. You will need to store the sound in a buffer ~ and play it
back from memory.

You can record directly into the buffer ~ with record ~. (See Tutorial 13 .) The input to
record ~ will come from adc ~ (or ezadc ~).

The two obvious choices for playing a sample from a buffer ~ at half speed are play ~ and
groove ~. However, because we want to add vibrato to the sound—by continuously
varying the playback speed—the better choice is groove ~, which uses a (possibly time-
varying) signal to control its playback speed directly. (See Tutorial 14 .)

The amplitude envelope is best generated by a line ~ object which is sending its output to a *~
object to scale the amplitude of the output signal (coming from groove ~). You might want
to use a function  object to draw the envelope, and send its output to line ~ to describe the
envelope. (See Tutorial 7.)

The Macintosh keyboard will need to trigger messages to the objects adc~, record ~,
groove ~, and line ~ (or function ) in order to perform the required tasks. Use the key
object to get the keystrokes, and use select  to detect the keys you want to use.



Tutorial 17 Sampling: Review

100 MSP Tutorial

Use a sinusoidal wave from a cycle ~ object to apply vibrato to the sample. The frequency of
the cycle ~ will determine the rate  of the vibrato, and the amplitude of the sinusoid will
determine the depth  of vibrato. Therefore, you will need to scale cycle ~’s amplitude with a
*~ object to achieve the proper vibrato depth.

In the discussion of vibrato in Tutorial 10, we created vibrato by adding the output of the
modulating oscillator to the frequency input of the carrier oscillator. However, two things
are different in this exercise. First of all, the modulating oscillator needs to modulate the
playback speed of groove ~ rather than the frequency of another cycle ~ object. Second,
adding the output of the modulator to the input of the carrier—as in Tutorial 10—creates a
vibrato of equal frequency above and below the carrier frequency, but does not create a
vibrato of equal pitch  up and down (as required in this exercise). A change in pitch is
achieved by multiplying the carrier frequency by a certain amount, rather than by adding an
amount to it.

To raise the pitch of a tone by one semitone, you must multiply its frequency by the twelfth
root of 2, which is a factor of 2 to the 1/ 12  power (approximately 1.06). To lower the pitch of
a tone by one semitone, you must multiply its frequency by 2 to the -1/ 12  power
(approximately 0.944). To calculate a signal value that changes continuously within this
range, you may need to use an MSP object not yet discussed, pow ~. Consult its description
in the Objects  section of this manual for details.

Solution

• Scroll the example Patcher window all the way to the right to see a solution to this
exercise.

Solution to the exercise for recording and playing an audio sample

The arguments to the buffer ~ object specify a length in milliseconds (1000) and a number of
channels (2). This determines how much memory will initially be allocated to the buffer ~.



Sampling: Review Tutorial 17

MSP Tutorial 101

Set name, length, and channels of the buffer ~

Since the memory allocated in the buffer ~ is limited to one second, there is no need to tell
the record ~ object to stop when you record into the buffer ~. It stops when it reaches the
end of the buffer ~.

The keystrokes from the Macintosh keyboard are reported by key , and the select  object is
used to detect the a, r, and p keys. The bangs from select  trigger the necessary messages to
adc ~, record ~, and groove ~.

Keystrokes are detected and used to send messages to MSP objects

The keystroke p is also used to trigger the amplitude envelope at the same time as the sample
is played. This envelope is used to scale the output of groove ~.

A two-second envelope tapers the amplitude at the beginning and end of the sample

A sig ~ 0.5 object sets the basic playback speed of groove ~ at half speed. The amplitude of a
3 Hz cosine wave is scaled by a factor of 0.083333 (equal to 1/ 12 , but more computationally
efficient than dividing by 12) so that it varies from -1/ 12  to 1/12 . This sinusoidal signal is
used as the exponent in a power function in pow ~ (2 to the power of the input), and the
result is used as the factor by which to multiply the playback speed.



Tutorial 17 Sampling: Review

102 MSP Tutorial

Play at half speed, ± one semitone



MIDI control: Mapping MIDI to MSP Tutorial 18

MSP Tutorial 103

MIDI range vs. MSP range

One of the greatest assets of MSP is the ease with which one can combine MIDI and digital
signal processing. The great variety of available MIDI controllers means that you have many
choices for the instrument you want to use to control sounds in MSP. Because Max is
already a well developed environment for MIDI programming, and because MSP is so fully
integrated into that environment, it is not difficult to use MIDI to control parameters in
MSP.

The main challenge in designing programs that use MIDI to control MSP is to reconcile the
numerical ranges needed for the two types of data. MIDI data bytes are exclusively integers
in the range 0 to 127. For that reason, most numerical processing in Max is done with
integers and most Max objects (especially user interface objects) deal primarily with
integers. In MSP, on the other hand, audio signal values are most commonly decimal
numbers between -1.0 and 1.0, and many other values (such as frequencies, for example)
require a wide range and precision to several decimal places. Therefore, almost all numerical
processing in MSP is done with floating point (decimal) numbers.

Often this “incompatibility” can be easily reconciled by linear mapping of one range of
values (such as MIDI data values 0 to 127) into another range (such as 0 to 1 expected in the
inlets of many MSP objects). Linear mapping is explained in Max Tutorial 29  , and is
reviewed in this chapter. In many other cases, however, you may need to map the linear
numerical range of a MIDI data byte to some nonlinear aspect of human perception—such as
our perception of a 12-semitone increase in pitch as a power of 2 increase in frequency, etc.
This requires other types of mapping; some examples are explored in this tutorial chapter.

Controlling synthesis parameters with MIDI

In this tutorial patch, we use MIDI continuous controller messages to control several
different parameters in an FM synthesis patch. The synthesis is performed in MSP by the
subpatch simpleFM ~ which was introduced in MSP Tutorial 11, and we map MIDI
controller 1 (the mod wheel) to affect, in turn, its amplitude, modulation index, vibrato
depth, vibrato rate, and pitch bend.

An FM synthesis subpatch is the sound generator to be modified by MIDI

If we were designing a real performance instrument, we would probably control each of these
parameters with a separate type of MIDI message—controller 7 for amplitude, controller 1
for vibrato depth, pitchbend for pitch bend, and so on. In this patch, however, we use the
mod wheel controller for everything, to ensure that the patch will work for almost any MIDI



Tutorial 18 MIDI control: Mapping MIDI to MSP

104 MSP Tutorial

keyboard. While this patch is not a model of good synthesizer design, it does let you isolate
each parameter and control it with the mod wheel.

In the lower right corner of the Patcher window, you can see that keys 0 to 5 of the
Macintosh keyboard can be used to choose an item in the pop-up umenu  at the top of the
window.

Use ASCII from the Macintosh keyboard to assign the function of the MIDI controller

The umenu  sends the chosen item number to gate to open one of its outlets, thus directing
the controller values from the mod wheel to a specific place in the signal network.

gate  directs the control messages to a specific place in the signal network

We will look at the special mapping requirements of each parameter individually. But first,
let’s review the formula for linear mapping.

Linear mapping

The problem of linear mapping is this: Given a value x  which lies in a range from xmin to
xmax, find the value y  that occupies a comparable location in the range ymin to ymax . For
example, 3 occupies a comparable location within the range 0 to 4 as 0.45 occupies within
the range 0 to 0.6. This problem can be solved with the formula:

y = ((x - xmin) * (ymax - ymin) ÷ (xmax - xmin)) + ymin

For this tutorial, we designed a subpatch called map  to solve the equation. map  receives an x
value in its left inlet, and—based on the values for xmin, xmax, ymin, and ymax received in
its other inlets—it sends out the correct value for y . This equation will allow us to map the
range of controller values—0 to 127—onto various other ranges needed for the signal
network. The map  subpatch appears in the upper right area of the Patcher window.



MIDI control: Mapping MIDI to MSP Tutorial 18

MSP Tutorial 105

The contents of the map  subpatch: the linear mapping formula expressed in an expr  object

Once we have scaled the range of control values with map , some additional mapping may be
necessary to suit various signal processing purposes, as you will see.

Mapping MIDI to amplitude

As noted in MSP Tutorial 4 , we perceive relative amplitude on a multiplicative rather than an
additive scale. For example we hear the same relationship between an amplitudes 0.5 and
0.25 (a factor of 1/2, but a difference of 0.25) as we do between amplitudes 0.12 and 0.06
(again a factor of 1/2, but a difference of only 0.06). For this reason, if we want to express
relative amplitude on a linear scale (using the MIDI values 0 to 127), it is more appropriate
to use decibels.

• Click on the toggle  to turn audio on. Type the number 5 (or choose “Amplitude”
from the umenu ) to direct the controller values to affect the output amplitude.

The item number chosen in the umenu  also recalls a preset in the preset  object, which
provides range values to map . In this case, ymin is -80 and ymax is 0, so as the mod wheel
goes from 0 to 127 the amplitude goes from -80 dB to 0 dB (full amplitude). The decibel
values are converted to amplitude in the subpatch called dBtoA . This converts a straight line
into the exponential curve necessary for a smooth increase in perceived loudness.

The contents of the dBtoA  subpatch

• Move the mod wheel on your MIDI keyboard to change the amplitude of the tone.
Set the amplitude to a comfortable listening level.

With this mapping, the amplitude changes by approximately a factor of 2 every time the
controller value changes by 10. This permits the same amount of control at low amplitudes as
at high amplitudes (which would not be the case with a straight linear mapping).



Tutorial 18 MIDI control: Mapping MIDI to MSP

106 MSP Tutorial

Mapping MIDI to frequency

Our perception of relative pitch is likewise multiplicative rather than additive with respect
to frequency. In order for us to hear equal spacings of pitch, the frequency must change in
equal powers of 2. (See the discussions of pitch-to-frequency conversion in MSP Tutorial
17  and MSP Tutorial 19.)

• Type the number 1 (or choose “Octave Pitch Bend” from the umenu ) to direct the
controller values to affect the carrier frequency. Move the mod wheel to bend the
pitch upward as much as one octave, and back down to the original frequency.

In order for the mod wheel to perform a pitch bend of one octave, we map its range onto the
range 0 to 1. This number is then used as the exponent in a power of 2 function and
multiplied times the fundamental frequency in expr .

Octave bend factor ranges from 20 to 21

20 = 1, and 21 = 2, so as the control value goes from 0 to 1 the carrier frequency increases
from 220 to 440, which is to say up an octave. The increase in frequency from 220 to 440
follows an exponential  curve, which produces a linear increase in perceived pitch from A to
A.

Mapping MIDI to modulation index

Mapping the MIDI controller to the modulation index of the FM instrument is much
simpler, because a linear control is what’s called for. Once the controller values are converted
by the map  subpatch, no further modification is needed. The mod wheel varies the
modulation index from 0 (no modulation) to 24 (extreme modulation).

• Type the number 4 (or choose “Modulation Index” from the umenu ) to direct the
controller values to affect the modulation index. Move the mod wheel to change the
timbre of the tone.

Mapping MIDI to vibrato

This instrument has an additional low-frequency oscillator (LFO) for adding vibrato to the
tone by modulating the carrier frequency at a sub-audio rate. In order for the depth of the
vibrato to be equal above and below the fundamental frequency, we use the output of the LFO
as the exponent of a power function in pow ~.



MIDI control: Mapping MIDI to MSP Tutorial 18

MSP Tutorial 107

Calculate the vibrato factor

The base of the power function (controlled by the mod wheel) varies from 1 to 2. When the
base is 1 there is no vibrato; when the base is 2 the vibrato is ± one octave.

• You’ll need to set both the vibrato rate and the vibrato depth before hearing the
vibrato effect. Type 2 and move the mod wheel to set a non-zero vibrato rate. Then
type 3 and move the mod wheel to vary the depth of the vibrato.

The clumsiness of this process (re-assigning the mod wheel to each parameter in turn)
emphasizes the need for separate MIDI controllers for different parameters (or perhaps
linked simultaneous control of more than one parameter with the same MIDI message). In a
truly responsive instrument, you would want to be able to control all of these parameters at
once. The next chapter shows a more realistic assignment of MIDI to MSP.

Summary

MIDI messages can easily be used to control parameters in MSP instruments, provided that
the MIDI data is mapped into the proper range. The map  subpatch implements the linear
mapping equation. When using MIDI to control parameters that affect frequency and
amplitude in MSP, the linear range of MIDI data from 0 to 127 must be mapped to an
exponential curve if you want to produce linear variation of perceived pitch and loudness.
The dBtoA  subpatch maps a linear range of decibels onto an exponential amplitude curve.
The pow ~ object allows exponential calculations with signals.



Tutorial 19 MIDI control: Synthesizer

108 MSP Tutorial

Implementing standard MIDI messages

In this chapter we’ll demonstrate how to implement MIDI control of a synthesis instrument
built in MSP. The example instrument is a MIDI FM synthesizer with velocity sensitivity,
pitch bend, and mod wheel control of timbre. To keep the example relatively simple, we use
only a single type of FM sound (a single “patch”, in synthesizer parlance), and only 2-voice
polyphony.

The main issues involved in MIDI control of an MSP synthesizer are first, converting a
MIDI key number into the proper equivalent frequency; second, converting a MIDI pitch
bend value into an appropriate frequency-scaling factor; and third, converting a MIDI
controller value into a modulator parameter (such as vibrator rate, vibrato depth, etc.).
Additionally, since a given MSP object can only play one note at a time, we will need to
handle simultaneous MIDI note messages gracefully.

Polyphony

Each sound-generating object in MSP—an oscillator such as cycle ~ or phasor ~, or a
sample player such as groove ~ or play ~—can only play one note at a time. Therefore, to
play more than one note at a time in MSP you need to have more than one sound-generating
object. In this tutorial patch, we make two identical copies of the basic synthesis signal
network, and route MIDI note messages to one or the other of them. This 2-voice
polyphony allows some overlap of consecutive notes, which normally occurs in legato
keyboard performance of a melody.

Assign a voice number with poly  to play polyphonic music

The poly  object assigns a voice number—1 or 2 in this case—to each incoming note
message, and if more than two keys are held down at a time poly  provides note-off
messages for the earlier notes so that the later notes can be played. The voice number, key
number, and velocity are packed together in a three-item list, and the route  object uses the
voice number to send the key number and velocity to one synthesizer “voice” or the other.
(If your computer is fast enough, of course, you can design synthesizers with many more
voices. You can test the capability of your computer by adding more and more voices and
observing the CPU Utilization in the DSP Status window.)



MIDI control: Synthesizer Tutorial 19

MSP Tutorial 109

Pitch bend

In this instrument we use MIDI pitch bend values from 0 to 127 to bend the pitch of the
instrument up or down by two semitones. Bending the pitch of a note requires multiplying
its (carrier) frequency by some amount. For a bend of ±2 semitones, we will need to
calculate a bend factor ranging from 2-2/12  (approximately 0.891) to 2 2/12 (approximately
1.1225).

MIDI pitch bend presents a unique mapping problem because, according to the MIDI
protocol, a value of 64 is used to mean “no bend” but 64 is not precisely in the center between
0 and 127. (The precise central value would be 63.5.) There are 64 values below 64 (0 to 63),
but only 63 values above it (65 to 127). We will therefore need to treat upward bends slightly
differently from downward bends.

Downward bend is calculated slightly differently from upward bend

The downward bend values (0 to 63) are offset by -64 and divided by 384 so that the
maximum downward bend (pitch bend value 0) produces an exponent of -64 /384, which is
equal to -2/ 12 . The upward bend values (64 to 127) are offset by -64 and divided by 378 so
that an upward bend produces an exponent ranging from 0 to 63 /378, which is equal to 2/ 12 .
The pack  and line ~ objects are used to make the frequency factor change gradually over 20
milliseconds, to avoid creating the effect of discrete stepwise changes in frequency.

Mod wheel

The mod wheel is used here to change the modulation index of our FM synthesis patch. The
mapping is linear; we simply divide the MIDI controller values by 16 to map them into a
range from 0 to (nearly) 8. The precise way this range is used will be seen when we look at
the synthesis instrument itself.

Controller values mapped into the range 0 to 7.9375



Tutorial 19 MIDI control: Synthesizer

110 MSP Tutorial

The FM synthesizer

• Double-click on one of the synthFMvoice ~ subpatch objects to open its Patcher
window.

The basis for this FM synthesis subpatch is the simpleFM ~ subpatch introduced (and
explained) in MSP Tutorial 11. A typed-in argument is used to set the harmonicity ratio at
1, yielding a harmonic spectrum. The MIDI messages will affect the frequency and the
modulation index of this FM sound. Let’s look first at the way MIDI note and pitch bend
information is used to determine the frequency.

MIDI-to-frequency conversion

The object mtof  is not a signal object, but it is very handy for use in MSP. It converts a
MIDI key number into its equivalent frequency.

Calculate the frequency of a given pitch

This frequency value is multiplied by the bend factor which was calculated in the main patch,
and the result is used as the carrier frequency in the simpleFM ~ subpatch.

The frequency of the note calculated from key number and pitch bend data

Velocity control of amplitude envelope

MIDI note-on velocity is used in this patch, as in most synthesizers, to control the
amplitude envelope. The tasks needed to accomplish this are 1) separate note-on velocities
from note-off velocities, 2) map the range of note-on velocities—1 to 127—into an
amplitude range from 0 to 1 (a non-linear mapping is usually best), and in this case 3) map
note-on velocity to rate of attack and decay of the envelope.

The first task is achieved easily with a select  0 object, so that note-on velocity triggers a
function  object to send the attack and decay shape, and note-off velocity returns the
amplitude to 0, as shown in the following example.



MIDI control: Synthesizer Tutorial 19

MSP Tutorial 111

MIDI note-on velocity sets domain and range of the amplitude envelope

Before the function  is triggered, however, we use the note-on velocity to set the domain
and range , which determine the duration and amplitude of the envelope. The expr  object on
the right calculates the amount of time in which the attack and decay portions of the envelope
will occur. Maximum velocity of 127 will cause them to occur in 100 ms, while a much lesser
velocity of 60 will cause them to occur in 496 ms. Thus notes that are played more softly will
have a slower attack, as is the case with many wind and brass instruments.

The expr  object on the left maps velocity to an exponential curve to determine the amplitude.

1270

1.0

0
velocity

amplitude

Velocity mapped to amplitude with an exponent of 4

If we used a straight linear mapping, MIDI velocities from 127 to 64 (the range in which
most notes are played) would cover only about a 6 dB amplitude range. The exponential
mapping increases this to about 24 dB, so that change in the upper range of velocities
produces a greater change in amplitude.



Tutorial 19 MIDI control: Synthesizer

112 MSP Tutorial

MIDI control of timbre

It’s often the case that acoustic instruments sound brighter (contain more high frequencies)
when they’re played more loudly. It therefore makes sense to have note-on velocity affect the
timbre of the sound as well as its loudness. In the case of brass instruments, the timbre
changes very much in correlation with amplitude, so in this patch we use the same envelope
to control both the amplitude and  the modulation index of the FM instrument. The envelope
is sent to a *~ object to scale it into the proper range. The +~ 8 object ensures that the
modulation index affected by velocity ranges from 0 to 8 (when the note is played with
maximum velocity). As we saw earlier, in the main patch the modulation wheel can be used
to increase the modulation index still further (adding up to 8 more to the modulation index
range). Thus, the combination of velocity and mod wheel position can affect the modulation
index substantially.

 Envelope and mod wheel control modulation index

• Listening only to MSP (with the volume turned down on your keyboard synth), play
a single-line melody on the MIDI keyboard. As you play, notice the effect that
velocity has on the amplitude, timbre, and rate of attack. Move the mod wheel
upward to increase the over-all brightness of the timbre. You can also use the mod
wheel to modulate the timbre during the sustain portion of the note. Try out the
pitch bend wheel to confirm that it has the intended effect on the frequency.

Summary

MIDI data can be used to control an MSP synthesis patch much like any other synthesizer. In
normal instrument design, MIDI key number and pitch bend wheel position are both used to
determine the pitch of a played note. The key number must be converted into frequency
information with the mtof  object. The pitch bend value must be converted into the proper
frequency bend factor, based on the twelfth-root-of-two per semitone used in equal
temperament. Since the designated “no-bend” value of 64 is not in the precise center of the 0
to 127 range, upward bend must be calculated slightly differently from downward bend.

Note-on velocity is generally used to determine the amplitude of the note, and triggers the
attack portion of the amplitude envelope. The note-off message triggers the release portion
of the envelope. The velocity value can be used to alter the range of the envelope (or to
provide a factor for scaling the amplitude). It is usually best to map velocity to amplitude
exponentially rather than linearly. Velocity can also be used to alter the rate of the envelope,
and/or other parameters such as modulation index.



MIDI control: Synthesizer Tutorial 19

MSP Tutorial 113

An MSP object can only make one sound at a time, so if you want to play more than one
simultaneous note via MIDI you will need to assign each note a voice number with poly , and
route each voice to a different MSP object.



Tutorial 20 MIDI control: Sampler

114 MSP Tutorial

Basic sampler features

In this chapter we demonstrate a design for playing pre-recorded samples from a MIDI
keyboard. This design implements some of the main features of a basic sampler keyboard:
assigning samples to regions of the keyboard, specifying a base (untransposed) key location
for each sample, playing samples back with the proper transposition depending on which
key is played, and making polyphonic voice assignments. For the sake of simplicity, this
patch does not implement control from the pitchbend wheel or mod wheel, but the method
for doing so would not be much different from that demonstrated in the previous two
chapters.

In this patch we use the groove ~ object to play samples back at various speeds, in some
cases using looped samples. As was noted in MSP Tutorial 19, if we want a polyphonic
instrument we need as many sound-generating objects as we want separate simultaneous
notes. In this tutorial patch, we use four copies of a subpatch called samplervoice ~ to
supply four-voice polyphony. As in MSP Tutorial 19—we use a poly  object to assign a
voice number to each MIDI note, and we use route  to send the note information to the
correct samplervoice ~ subpatch.

poly  assigns a voice number to each MIDI note, to send information to the correct subpatch

Before we examine the workings of the samplervoice ~ subpatch, it will help to review what
information is needed to play a sample correctly.

1) The sound samples must be read into memory (in buffer ~ objects), and a list of the
memory locations (buffer ~ names) must be kept.

2) Each sample must be assigned to a region of the keyboard, and a list of the key
assignments must be kept.

3) A list of the base key for each region—the key at which the sample should play back
untransposed—must be kept.



MIDI control: Sampler Tutorial 20

MSP Tutorial 115

4) A list of the loop points for each sample (and whether looping should be on or off)
must be kept.

5) When a MIDI note message is received, and is routed to a samplervoice ~
subpatch, the groove ~ object in that subpatch must first be told which buffer ~ to
read (based on the key region being played), how fast to play the sample (based on
the ratio between the frequency being played and the base key frequency for that
region), what loop points to use for that sample, whether looping is on or off, and
what amplitude scaling factor to use based on the note-on velocity.

In this patch, the samples are all read into memory when the patch is first loaded.

• Double-click on the p samplebuffers subpatch to open its Patcher window.

You can see that six samples have been loaded into buffer ~s named sample1, sample2, etc. If,
in a performance situation, you need to have access to more samples than you can store at
once in RAM, you can use read messages with filename arguments to load new samples into
buffer ~s as needed.

• Close the subpatch window. Click on the message  box marked “keyboard sample
assignments”.

This stores a set of numbered key regions in the funbuff  object. (This information could
have been embedded in the funbuff  and saved with the patch, but we left it in the message
box here so that you can see the contents of the funbuff .) MIDI key numbers 0 to 40 are key
region 1, keys 41 to 47 are key region 2, etc. When a note-on message is received, the key
number goes into funbuff , and funbuff  reports the key region number for that key. The
key region number is used to look up other vital information in the coll .

Note-on key number finds region number in funbuff , which looks up sample info in coll

• Double-click on the coll  object to see its contents.

1, 24 sample1 0 0 0;
2, 33 sample2 0 0 0;
3, 50 sample3 0.136054 373.106537 1;
4, 67 sample4 60.204079 70.476189 1;
5, 84 sample5 0 0 0;
6, 108 sample6 0 0 0;

coll  contains sample information for each key region



Tutorial 20 MIDI control: Sampler

116 MSP Tutorial

The key region number is used to index the information in coll . For example, whenever a
key from 53 to 67 is pressed, funbuff  sends out the number 3, and the information for key
region 3 is recalled and sent to the appropriate samplervoice ~ subpatch. The data for each
key region is: base key, buffer ~ name, loop start time, loop end time, and loop on/off flag.

The voice number from poly  opens the correct outlet of gate  so that the information from
coll  goes to the right subpatch.

Playing a sample: the samplervoice~ subpatch

• Close the coll  window, and double-click on one of the samplervoice ~ subpatch
objects to open its Patcher window.

The samplervoice ~ subpatch

You can see that the information from coll  is unpacked in the subpatch and is sent to the
proper places to prepare the groove ~ object for the note that is about to be played. This tells
groove ~ what buffer ~ to read, what loop times to use, and whether looping should be on or
off. Then, when the note information comes in the left inlet, the velocity is used to send an
amplitude value to the *~ object, and the note-on key number is used (along with the base
key number received from the right inlet) to calculate the proper playback speed for
groove ~ and to trigger groove ~ to begin playback from time 0.

MSP sample rate vs. soundfile sample rate

• Close the subpatch window.

You’re almost ready to begin playing samples, but there is one more detail to attend to first.
To save storage space, the samples used in this patch are mono AIFF files with a sample rate
of 22,050 Hz. To hear them play properly you should set the sample rate of MSP to that rate.



MIDI control: Sampler Tutorial 20

MSP Tutorial 117

• Double-click on the dac~ object to open the DSP Status window. Set the Sampling
Rate to 22.050 kHz, then close the DSP Status window.

The difference between the sample rate of a soundfile and the sample rate being used in MSP
is a potential problem when playing samples. This method of resolving the difference
suffices in this situation because the soundfiles are all at the same sample rate and because
these samples are the only sounds we will be playing in MSP. In other situations, however,
you’re likely to want to play samples (perhaps with different sampling rates) combined with
other sounds in MSP, and you’ll want to use the optimum sampling rate.

For such situations, you would be best advised to use the ratio between the soundfile sample
rate and the MSP sample rate as an additional factor in determining the correct playback
speed for groove ~. For example, if the sample rate of the soundfile is half the sample rate
being used by MSP, then groove ~ should play the sample half as fast.

You can use the objects info ~ and dspstate ~ to find out the sampling rate of the sample and
of MSP respectively, as demonstrated in the following example.

Calculate playback speed based on the sampling rates of the soundfile and of MSP

The note-on key number is used first to recall the information for the sample to be played.
The name of a buffer ~ is sent to groove ~ and info ~. Next, a bang is sent to dspstate ~ and
info ~. Upon receiving a bang, dspstate ~ reports the sampling rate of MSP and info ~
reports the sampling rate of the AIFF file stored in the buffer ~. In the lower left part of the
example, you can see how this sampling rate information is used as a factor in determining
the correct playback speed for groove ~.



Tutorial 20 MIDI control: Sampler

118 MSP Tutorial

Playing samples with MIDI

• Turn audio on and set the “Output Level” number box  to a comfortable listening
level. Play a slow chromatic scale on the MIDI keyboard to hear the different samples
and their arrangement on the keyboard.

To arrange a unified single instrument sound across the whole keyboard, each key region
should contain a sample of a note from the same source. In this case, though, the samples are
arranged on the keyboard in such a way as to make available a full “band” consisting of
drums, bass, and keyboard. This sort of multi-timbral keyboard layout is useful for simple
keyboard splits (such as bass in the left hand and piano in the right hand) or, as in this case,
for accessing several different sounds on a single MIDI channel with a sequencer.

• For an example of how a multi-timbral sample layout can be used by a sequencer,
click on the toggle  marked “Play Sequence”. Click on it again when you want to
stop the sequence. Turn audio off. Double-click on the p sequence object to open the
Patcher window of the subpatch.

The p  sequence subpatch

The seq  sampleseq.midi object contains a pre-recorded MIDI file. The midiparse  object
sends the MIDI key number and velocity to poly  in the main patch. Each time the sequence
finishes playing, a bang is sent out the right outlet of seq ; the bang is used to restart the s e q
immediately, to play the sequence as a continuous loop. When the sequence is stopped by the
user, a bang is sent to midiflush  to turn off any notes currently being played.

• When you have finished with this patch, don’t forget to open the DSP Status
window and restore the Sampling Rate to its original setting.

Summary

To play samples from the MIDI keyboard, load each sample into a buffer ~ and play the
samples with groove ~. For polyphonic sample playback, you will need one groove ~ object
per voice of polyphony. You can route MIDI notes to different groove ~ objects using voice
assignments from the poly  object.



MIDI control: Sampler Tutorial 20

MSP Tutorial 119

To assign each sample to a region of the MIDI keyboard, you will need to keep a list of key
regions, and for each key region you will need to keep information about which buffer ~ to
use, what transposition to use, what loop points to use, etc. A funbuff  object is good for
storing keyboard region assignments. The various items of information about each sample
can be best stored together as lists in a coll , indexed by the key region number. When a note
is played, the key region is looked up in the funbuff , and that number is used to look up the
sample information in coll .

The proper transposition for each note can be calculated by dividing the played frequency
(obtained with the mtof  object) by the base frequency of the sample. The result is used as the
playback speed for groove ~. If the sampling rate of the recorded samples differs from the
sampling rate being used in MSP, that fact must be accounted for when playing the samples
with groove ~. Dividing the soundfile sampling rate by the MSP sampling rate provides the
correct factor by which to multiply the playback speed of groove ~. The sampling rate of
MSP can be obtained with the dspstate ~ object. The sampling rate of the AIFF file in a
buffer ~ can be obtained with info ~.

Note-on velocity can be used to control the amplitude of the samples. An exponential
mapping of velocity to amplitude is usually best. Multi-timbral sample layouts on the
keyboard can be useful for playing many different sounds, especially from a sequencer. The
end-of-file bang from the right outlet of seq  can be used to restart the seq  to play it in a
continuous loop. If the MIDI data goes through a midiflush  object, any notes that are on
when the seq  is stopped can be turned off by sending a bang to midiflush .



Tutorial 21 MIDI control: Panning

120 MSP Tutorial

Panning for localization and distance effects

Loudness is one of the cues we use to tell us how far away a sound source is located. The
relative loudness of a sound in each of our ears is a cue we use to tell us in what direction the
sound is located. (Other cues for distance and location include inter-aural delay, ratio of
direct to reflected sound, etc. For now we’ll only be considering loudness.)

When a sound is coming from a single speaker, we localize the source in the direction of that
speaker. When the sound is equally balanced between two speakers, we localize the sound in a
direction precisely between the speakers. As the balance between the two speakers varies
from one to the other, we localize the sound in various directions between the two speakers.

The term panning refers to adjusting the relative loudness of a single sound coming from
two (or more) speakers. On analog mixing consoles, the panning of an input channel to the
two channels of the output is usually controlled by a single knob. In MIDI, panning is
generally controlled by a single value from 0 to 127. In both cases, a single continuum is used
to describe the balance between the two stereo channels, even though the precise amplitude of
each channel at various intermediate points can be calculated in many different ways.

All other factors being equal, we assume that a softer sound is more distant than a louder
sound, so the overall loudness effect created by the combined channels will give us an
important distance cue. Thus, panning must be concerned not only with the proper balance
to suggest direction  of the sound source; it must also control the perceived loudness of the
combined speakers to suggest distance.

This tutorial demonstrates three ways of calculating panning, controllable by MIDI values 0
to 127. You can try out the three methods and decide which is most appropriate for a given
situation in which you might want to control panning.

Patch for testing panning methods

In this tutorial patch, we use a repeated “chirp” (a fast downward glissando spanning more
than three octaves) as a distinctive and predictable sound to pan from side to side.

• To see how the sound is generated, double-click on the p ‘sound source’ subpatch to
open its Patcher window.

Because of the gate~ and begin ~ objects, audio processing is off in this subpatch until a 1 is
received in the inlet to open the gate ~. At that time, the phasor ~ generates a linear
frequency glissando going from 2000 to 200 two times per second.



MIDI control: Panning Tutorial 21

MSP Tutorial 121

The p ‘sound source’ subpatch

• Close the subpatch window.

The output of this subpatch is sent to two *~ objects—one for each output channel—where
its amplitude at each output channel will be scaled by one of the panning algorithms. You can
choose the panning algorithm you want to try from the pop-up umenu  at the top of the
patch. This opens the an inlet of the two selector ~ objects to receive the control signals
from the correct panning subpatch. It also opens an outlet of the gate  object to allow control
values into the desired subpatch. The panning is controlled by MIDI input from continuous
controller No. 10 (designated for panning in MIDI). In case your MIDI keyboard doesn’t
send controller 10 easily, you can also use the pitch bend wheel to test the panning. (For that
matter, you don’t need MIDI at all. You can just drag on the number box  marked “MIDI
panning”.)

Selection from the umenu  opens input and output for one of the three panning subpatches



Tutorial 21 MIDI control: Panning

122 MSP Tutorial

Linear crossfade

The most direct way to implement panning is to fade one channel linearly from 0 to 1 as the
other channel fades linearly from 1 to 0. This is the easiest type of panning to calculate. We
map the range of MIDI values 0 to 127 onto the amplitude range 0 to 1, and use that value as
the amplitude for the right channel; the left channel is always set to 1 minus the amplitude of
the left channel. The only hitch is that a MIDI pan value of 64 is supposed to mean equal
balance between channels, but it is not precisely in the center of the range (64/127 ≠ 0.5). So
we have to treat MIDI values 0 to 64 differently from values 65 to 127.

• Double-click on the p ‘simple linear xfade’ object to open its Patcher window.

Linear crossfade using MIDI values 0 to 127 for control

This method seems perfectly logical since the sum of the two amplitudes is always 1. The
problem is that the intensity  of the sound is proportional to the sum of the squares  of the
amplitudes from each speaker. That is, two speakers playing an amplitude of 0.5 do not
provide the same intensity (thus not the same perceived loudness) as one speaker playing an
amplitude of 1. With the linear crossfade, then, the sound actually seems softer  when panned
to the middle than it does when panned to one side or the other.

• Close the subpatch window. Choose “Simple Linear Crossfade” from the umenu .
Click on the ezdac ~ to turn audio on, click on the toggle  to start the “chirping”
sound, and use the “Amplitude” number box  to set the desired listening level. Move
the pitch bend wheel of your MIDI keyboard to pan the sound slowly from one
channel to the other. Listen to determine if the loudness of the sound seems to stay
constant as you pan.

While this linear crossfade might be adequate in some situations, we may also want to try to
find a way to maintain a constant intensity as we pan.

Equal distance crossfade

If we can maintain a constant intensity as we pan from one side to the other, this will give the
impression that the sound source is maintaining a constant distance from the listener.



MIDI control: Panning Tutorial 21

MSP Tutorial 123

Geometrically, this could only be true if the sound source were moving in an arc, with the
listener at the center, so that the distance between the sound source and the listener was
always equal to the radius of the arc.

It happens that we can simulate this condition by mapping one channel onto a quarter cycle of
a cosine wave and the other channel onto a quarter cycle of a sine wave. Therefore, we’ll map
the range of MIDI values 0 to 127 onto the range 0 to 0.25, and use the result as an angle for
looking up the cosine and sine values.

Technical detail :  As the sound source travels on a hypothetical arc from 0° to 90° (1/4

cycle around a circle with the listener at the center), the cosine of its angle goes from
1 to 0 and the sine of its angle goes from 0 to 1. At all points along the way, the
square of the cosine plus the square of the sine equals 1. This trigonometric identity
is analogous to what we are trying to achieve—the sum of the squares of the
amplitudes always equaling the same intensity—so these values are a good way to
obtain the relative amplitudes necessary to simulate a constant distance between
sound source and listener.

• Double-click on the p ‘constant distance xfade’ object to open its Patcher window.

MIDI values 0 to 127 are mapped onto 1/ 4 cycle of cosine and sine functions

Once again we need to treat MIDI values greater than 64 differently from those less than or
equal to 64, in order to retain 64 as the “center” of the range. Once the MIDI value is mapped
into the range 0 to 0.25, the result is used as a phase angle two cycle ~ objects, one a cosine
and the other (because of the additional phase offset of 0.75) a sine.

• Close the subpatch window. Choose “Equal Distance Crossfade” from the umenu .
Listen to the sound while panning it slowly from one channel to the other.



Tutorial 21 MIDI control: Panning

124 MSP Tutorial

Is the difference from the linear crossfade appreciable? Perhaps you don’t care whether the
listener has the impression of movement in an arc when listening to the sound being panned.
But the important point is that the equal distance method is preferable if only because it does
not cause a noticeable dip in intensity when panning from one side to the other.

Speaker-to-speaker crossfade

Given a standard stereo speaker placement—with the two speakers in front of the listener at
equal distances and angles—if an actual sound source (say, a person playing a trumpet)
moved in a straight line from one speaker to the other, the sound source would actually be
closer  to the listener when it’s in the middle than it would be when it’s at either speaker. So,
to emulate a sound source moving in a straight line from speaker to speaker, we will need to
calculate the amplitudes such that the intensity is proportional to the distance from the
listener.

L R

a
b

c

x

o

d

y

Distance b is shorter than distance a

Technical detail :  If we know the angle of the speakers (x  and -x), we can use the
cosine function to calculate distance a relative to distance b . Similarly we can use the
tangent function to calculate distance c relative to b. The distance between the
speakers is thus 2c , and as the MIDI pan value varies away from its center value of 64
it can be mapped as an offset (o ) from the center ranging from -c to +c . Knowing b
and o, we can use the Pythagorean theorem to obtain the distance (d) of the source
from the listener, and we can use the arctangent function to find its angle (y). Armed
with all of this information, we can finally calculate the gain for the two channels as
a.cos(y±x)/d .

• Choose “Speaker-to-Speaker Crossfade” from the umenu . Listen to the sound while
panning it slowly from one channel to the other. You can try different speaker angles
by changing the value in the “Speaker Angle” number box . Choose a speaker angle
best suited to your actual speaker positions.

This effect becomes more pronounced as the speaker angle increases. It is most effective
with “normal” speaker angles ranging from about 30° up to 45°, or even up to 60°. Below
30° the effect is too slight to be very useful, and above about 60° it’s too extreme to be
realistic.

• Double-click on the p ‘speaker-to-speaker xfade’ object to open its Patcher window.



MIDI control: Panning Tutorial 21

MSP Tutorial 125

The trigonometric calculations described above are implemented in this subpatch. The
straight ahead distance (b) is set at 1, and the other distances are calculated relative to it. The
speaker angle—specified in degrees by the user in the main patch—is converted to a fraction
of a cycle, and is eventually converted to radians (multiplied by 2π, or 6.2832) for the
trigonometric operations. When the actual gain value is finally calculated, it is multiplied by
a normalizing factor of 2/(d+b)  to avoid clipping. When the source reaches an angle greater
than 90° from one speaker or the other, that speaker’s gain is set to 0.

• To help get a better understanding of these calculations, move the pitch bend wheel
and watch the values change in the subpatch. The close the subpatch and watch the
gain values change in the main Patcher window.

The signal gain values are displayed by an MSP user interface object called number ~, which
is explained in the next chapter.

Summary

MIDI controller No. 10 (or any other MIDI data) can be used to pan a signal between output
channels. The relative amplitude of the two channels gives a localization cue for direction of
the sound source. The overall intensity of the sound (which is proportional to the sum of the
squares of the amplitudes) is a cue for perceived distance of the sound source.

Mapping the MIDI data to perform a linear crossfade of the amplitudes of the two channels is
one method of panning, but it causes a drop in intensity when the sound is panned to the
middle. Using the panning value to determine the angle  of the sound source on an arc around
the listener (mapped in a range from 0° to 90°), and setting the channel amplitudes
proportional to the cosine and sine of that angle, keeps the intensity constant as the sound is
panned.

When a sound moves past the listener in a straight line, it is loudest when it passes directly
in front of the listener. To emulate straight line movement, one can calculate the relative
distance of the sound source as it travels, and modify the amplitude of each channel (and the
overall intensity) accordingly.



Tutorial 22 Analysis: Viewing signal data

126 MSP Tutorial

Display the value of a signal: number~

This chapter demonstrates several MSP objects for observing the numerical value of signals,
and/or for translating those values into Max messages.

• Turn audio on and send some sound into the input jacks of the computer.

Every 250 milliseconds the number ~ objects at the top of the Patcher display the current
value of the signal coming in each channel, and the meter ~ objects show a graphic
representation of the peak amplitude value in the past 250 milliseconds, like an analog LED
display.

Current signal value is shown by number~ ; peak amplitude is shown by meter~

The signal coming into number ~ is sent out its right outlet as a float once every time it’s
displayed. This means it is possible to sample the signal value and send it as a message to
other Max objects.

The number ~ object is actually like two objects in one. In addition to receiving signal values
and sending them out the right outlet as a float, number ~ also functions as a floating point
number box  that sends a signal (instead of a float) out its left outlet.

• Move the mod wheel of your MIDI keyboard or drag on the right side of the
number ~ marked “Amplitude”. This sets the value of the signal being sent out
number ~’s left outlet. The signal is connected to the right inlet of two *~ objects, to
control the amplitude of the signal sent to the ezdac~.

float input to number ~ sets the value of the signal sent out the left outlet



Analysis: Viewing signal data Tutorial 22

MSP Tutorial 127

A number ~ object simultaneously converts any signal it receives into floats sent out the
right outlet, and converts any float it receives into a signal sent out the left outlet. Although it
can perform both tasks at the same time, it can only display one value at a time. The value
displayed by number ~ depends on which display mode it is in. When a small waveform
appears in the left part of the number ~, it is in Signal Monitor Mode , and shows the value of
the signal coming in  the left inlet. When a small arrow appears in the left part of number ~, it
is in Signal Output Mode , and shows the value of the signal going out  the left outlet.

The two display modes of number ~

You can restrict number ~ to one display mode or the other by selecting the object in an
unlocked Patcher and choosing Get Info… from the Max menu.

Allowed display modes can be chosen in the Get Info… dialog

At least one display mode must be checked. By default, both display modes are allowed, as
shown in the above example. If both display modes are allowed, you can switch from one
display mode to the other in a locked Patcher by clicking on the left side of the number ~.
The output of number ~ continues regardless of what display mode it’s in.

In the tutorial patch you can see the two display modes of number ~. The number ~ objects
at the top of the Patcher window are in Signal Monitor Mode  because we are using them to
show the value of the incoming signal. The “Amplitude” number ~ is in Signal Output Mode
because we are using it to send a signal and we want to see the value of that signal. (New
values can be entered into a number ~ by typing or by dragging with the mouse only when it



Tutorial 22 Analysis: Viewing signal data

128 MSP Tutorial

is in Signal Output display mode.) Since each of these number ~ objects is serving only one
function, each has been restricted to only one display mode in the Get Info… dialog.

• Click on the left side of the number ~ objects. They don’t change display mode
because they have been restricted to one mode or the other in Get Info….

Interpolation with number~

The number ~ object has an additional useful feature. It can be made to interpolate between
input values to generate a ramp signal much like the line ~ object. If number ~ receives a
non-zero number in its right inlet, it uses that number as an amount of time, in
milliseconds, to interpolate linearly to the new value whenever it receives a number in the left
inlet. This is equivalent to sending a list to line ~.

number ~ can send a linear ramp signal from its old value to a new value

Unlike line ~, however, number ~ does not need to receive the interpolation time value more
than once; it remembers the interpolation time and uses it for each new number received in
the left inlet. This feature is used for the “Amplitude” number ~ so that it won’t cause
discontinuous changes of amplitude in the output signal.

Peak amplitude: meter~

The meter ~ object periodically displays the peak amplitude it has received since the last
display. At the same time it also sends the peak signal value out its outlet as a float. The
output value is always a positive number, even if the peak value was negative.

meter ~ displays the peak signal amplitude and sends it out as a float



Analysis: Viewing signal data Tutorial 22

MSP Tutorial 129

meter ~ is useful for observing the peak amplitude of a signal (unlike number ~, which
displays and sends out the instantaneous amplitude of the signal). Since meter ~ is intended
for audio signals, it expects to receive a signal in the range -1 to 1. If that range is exceeded,
meter ~ displays a red “clipping” LED as its maximum.

• If you want to see the clipping display, increase the amplitude of the output signal
until it exceeds 1. (Then return it to a desirable level.)

The default interval of time between the display updates of meter ~ is 250 milliseconds, but
the display interval can be altered with the interval message. A shorter display interval makes
the LED display more accurate, while a longer interval gives you more time to read its visual
and numerical output.

• You can try out different display intervals by changing the number in the number
box  marked “Display Interval” in the lower left corner of the Patcher window.

By the way, the display interval of a number ~ object can be set in the same manner (as well
as via its Get Info…  dialog).

Use a signal to generate Max messages: snapshot~

The snapshot ~ object sends out the current value of a signal, as does the right inlet of
number ~. With snapshot ~, though, you can turn the output on and off, or request output
of a single value by sending it a bang. When you send a non-zero number in the right inlet,
snapshot ~ uses that number as a millisecond time interval, and begins periodically
reporting the value of the signal in its left inlet. Sending in a time interval of 0 stops
snapshot ~.

This right half of the tutorial patch shows a simple example of how a signal waveform might
be used to generate MIDI data. We’ll sample a sub-audio cosine wave to obtain pitch values
for MIDI note messages.

• Use the number ~ to set the output amplitude to 0. In the number box es at the top
of the patch, set the “Rate” number box to 0.14 and set the “Depth” number box to
0.5. Click on the message box 200 to start snapshot ~ reporting signal values every
fifth of a second.

Because snapshot ~ is reporting the signal value every fifth of a second, and the period of
the cycle ~ object is about 7 seconds, the melody will describe one cycle of a sinusoidal wave
every 35 notes. Since the amplitude of the wave is 0.5, the melody will range from 36 to 84
(60±24).

• Experiment with different “Rate” and “Depth” values for the cycle ~. Since
snapshot ~ is sampling at a rate of 5 Hz (once every 200 ms), its Nyquist rate is 2.5
Hz, so that limits the effective frequency of the cycle ~ (any greater frequency will be
“folded over”). Click on the 0 message  box to stop snapshot ~.



Tutorial 22 Analysis: Viewing signal data

130 MSP Tutorial

Amplitude modulation

• Set the tremolo depth to 0.5 and the tremolo rate to 4. Increase the output amplitude
to a desirable listening level.

The cycle ~ object is modulating the amplitude of the incoming sound with a 4 Hz tremolo.

• Experiment with faster (audio range) rates of modulation to hear the timbral effect
of amplitude modulation. To hear ring modulation, set the modulation depth to 1. To
remove the modulation effect, simply set the depth to 0.

View a signal excerpt: capture~

The capture ~ object is comparable to the Max object capture . It stores many signal values
(the most recently received 4096 samples, by default), so that you can view an entire excerpt
of a signal as text.

• Set the tremolo depth to 1, and set the tremolo rate to 172. Double-click on the
capture ~ object to open a text window containing the last 4096 samples.

This object is useful for seeing precisely what has occurred in a signal over time. (4096
samples is about 93 milliseconds at a sampling rate of 44.1 kHz.) You can type in an
argument to specify how many samples you want to view, and capture ~ will store that
many samples (assuming there is enough RAM available in Max), but there is a limit of
32,000 on how many characters can be displayed in a capture ~ text window. There are
various arguments and messages for controlling exactly what will be stored by capture ~.
See its description in the Objects  section for details.

Summary

The capture ~ object stores a short excerpt of a signal to be viewed as text. The meter ~
object periodically displays the peak level of a signal and sends the peak level out its outlet as a
float. The snapshot ~ object sends out a float to report the current value of a signal.
snapshot ~ reports the signal value once when it receives a bang, and it can also report the
signal value periodically if it receives a non-zero interval time in its right inlet.

The number ~ object is like a combination of a float number box , sig ~, and snapshot ~, all
at once. A signal received in its left inlet is sent out the right outlet as a float, as with
snapshot ~. A float or int received in its left inlet sets the value of the signal going out its left
outlet, as with sig ~. Both of these activities can go on at once in the same number ~ object,
although number ~ can only display  one value at a time. When number ~ is in Signal
Monitor Mode , it displays the value of the incoming signal. When number ~ is in Signal
Output Mode , it displays the value of the outgoing signal.

number ~ can also function as a signal ramp generator, like the line ~ object. If a non-zero
number has been received in the right inlet (representing interpolation time in



Analysis: Viewing signal data Tutorial 22

MSP Tutorial 131

milliseconds), whenever number ~ receives a float, its output signal interpolates linearly
between the old and new values.

These objects (along with a few others such as sig ~, peek ~ and avg ~) comprise the primary
links between MSP and Max. They convert signals to numerical Max messages, or vice
versa.



Tutorial 23 Analysis: Oscilloscope

132 MSP Tutorial

Graph of a signal over time

There are times when seeing a picture of a signal is instructive. The scope ~ object depicts
the signal it receives, in the manner of an analog oscilloscope, as a graph of amplitude over
time.

There are two problems scope ~ must consider when plotting a graph of a signal in real
time. First of all, in order for your eye to follow a time-varying signal, an excerpt of the
signal must be captured and displayed for a certain period of time (long enough for you
really to see it). Therefore, the graph must be displayed periodically, and will always lag a bit
behind what you hear. Second, there aren’t enough pixels on the screen for you to see a plot
of every single sample (at least, not without the display being updated at blinding speed), so
scope ~ has to use a single pixel to summarize many samples.

A patch to view different waveforms

This tutorial shows how to get a useful display of a signal. The patch adds four cosine
oscillators to create a variety of waveforms, and displays them in scope ~. The frequency,
phase, and amplitude of each sinusoid is set independently, and the over-all amplitude of the
sum of the oscillators is scaled with an additional *~ object. The settings for each waveform
are stored in a preset  object.

Additive synthesis can be used to create a variety of complex waveforms

• Click on the first preset in the preset  object.

When audio is turned on, the dspstate ~ object sends the current sampling rate out its
middle outlet. This is divided by the number of pixels per display buffer (the display buffer
is where the display points are held before they’re shown on the screen), and the result is the
number of signal samples per display point (samples per pixel). This number is sent in the
left inlet of scope ~ to tell it how many samples to assign to each display pixel. The default
number of pixels per display buffer is 128, so by this method each display will consist of
exactly one second of signal. In other words, once per second scope ~ displays the second
that has just passed. We have stretched the scope ~ (using its grow handle) to be 256 pixels
wide—twice its default width—in order to provide a better view.

On the next page we will describe the different waveforms created by the oscillators.

• One by one, click on the different presets to see different waveforms displayed in the
scope ~. The first eight waves are at the sub-audio frequency of 1 Hz to allow you to



Analysis: Oscilloscope Tutorial 23

MSP Tutorial 133

see a single cycle of the waveform, so the signal is not sent to the dac~ until the ninth
preset is recalled.

Preset 1. A 1 Hz cosine wave.

Preset 2. A 1 Hz sine wave. (A cosine wave with a phase offset of 3/4 cycle.)

Preset 3. A 1 Hz cosine wave plus a 2 Hz cosine wave (i.e. octaves).

Preset 4. Four octaves: cosine waves of equal amplitude at 1, 2, 4, and 8 Hz.

Preset 5. A band-limited square wave. The four oscillators produce four sine waves with the
correct frequencies and amplitudes to represent the first four partials of a square wave.
(Although the amplitudes of the oscillators are only shown to two decimal places, they are
actually stored in the preset with six decimal place precision.)

Preset 6. A band-limited sawtooth wave. The four oscillators produce four sine waves with
the correct frequencies and amplitudes to represent the first four partials of a sawtooth wave.

Preset 7. A band-limited triangle wave. The four oscillators produce four sine waves with
the correct frequencies and amplitudes to represent the first four partials of a triangle wave
(which, it appears, is actually not very triangular without its upper partials).

Preset 8. This wave has the same frequencies and amplitudes as the band-limited square
wave, but has arbitrarily chosen phase offsets for the four components. This shows what a
profound effect the phase of components can have on the appearance  of a waveform, even
though its effect on the sound  of a waveform is usually very slight.

Preset 9. A 32 Hz sinusoid plus a 36 Hz sinusoid (one-half cycle out of phase for the sake of
the appearance in the scope ~). The result is interference causing beating at the difference
frequency of 4 Hz.

Preset 10. Combined sinusoids at 200, 201, and 204 Hz, producing beats at 1, 3, and 4 Hz.

Preset 11. Although the frequencies are all displayed as 200 Hz, they are actually 200,
200.25, 200.667, and 200.8. This produces a complicated interference pattern of six
different sub-audio beat frequencies, a pattern which only repeats precisely every minute.
We have set the number of samples per pixel much lower, so each display represents about
50 ms. This allows you to see about 10 wave cycles per display.

Preset 12. Octaves at 100, 200, and 400 Hz (with different phase offsets), plus one oscillator
at 401 Hz creating beats  at 1 Hz.

Preset 13. A cluster of equal-tempered semitones. The dissonance of these intervals is
perhaps all the more pronounced when pure tones are used. Each display shows about 100
ms of sound.



Tutorial 23 Analysis: Oscilloscope

134 MSP Tutorial

Preset 14. A just-tuned dominant seventh chord; these are the 4th, 5th, 6th, and 7th
harmonics of a common fundamental, so their sum has a periodicity of 100 Hz, two octaves
below the chord itself.

Preset 15. Total phase cancellation. A sinusoid is added to a copy of itself 180° out of phase.

Preset 16. All oscillators off.

Summary

The scope ~ object gives an oscilloscope view of a signal, graphing amplitude over time.
Because scope ~ needs to collect the samples before displaying them, and because the user
needs a certain period of time to view the signal, the display always lags behind the signal by
one display period. A display period (in seconds) is determined by the number of pixels per
display buffer, times the number of samples per pixel, divided by the signal sampling rate.
You can control those first two values by sending ints in the inlets of scope ~. The sampling
rate of MSP can be obtained with the dspstate ~ object.



Analysis: Using the FFT Tutorial 24

MSP Tutorial 135

Fourier’s theorem

The French mathematician Joseph Fourier demonstrated that any periodic wave can be
expressed as the sum of harmonically related sinusoids, each with its own amplitude and
phase. Given a digital representation of a periodic wave, one can employ a formula known as
the discrete Fourier transform (DFT) to calculate the frequency, phase, and amplitude of its
sinusoidal components. Essentially, the DFT transforms  a time-domain representation of a
sound wave into a frequency-domain spectrum.

Typically the Fourier transform is used on a small “slice” of time, which ideally is equal to
exactly one cycle of the wave being analyzed. To perform this operation on “real world”
sounds—which are almost invariably not  strictly periodic, and which may be of unknown
frequency—one can perform the DFT on consecutive time slices to get a sense of how the
spectrum changes over time.

If the number of digital samples in each time slice is a power of 2, one can use a faster version
of the DFT known as the fast Fourier transform (FFT). The formula for the FFT is
encapsulated in the fft ~ object. The mathematics of the Fourier transform are well beyond the
scope of this manual, but this tutorial chapter will demonstrate how to use the fft ~ object for
signal analysis.

Spectrum of a signal: fft~

fft ~ receives a signal in its inlet. For each slice of time it receives (512 samples long by
default) it sends out a signal of the same length listing the amount of energy in each
frequency region. The signal that comes out of fft ~ is not anything you’re likely to want to
listen to. Rather, it’s a list of relative amplitudes of 512 different frequency bands in the
received signal. This “list” happens to be exactly the same length as the samples received in
each time slice, so it comes out at the same rate as the signal comes in. The signal coming out
of fft ~ is a frequency-domain analysis of the samples it received in the previous time slice.

Although the transform comes out of fft ~ in the form of a signal, it is not a time-domain
signal. The only object that “understands” this special signal is the ifft ~ object, which
performs an inverse  FFT on the spectrum and transforms it back into a time-domain
waveform.



Tutorial 24 Analysis: Using the FFT

136 MSP Tutorial

The signal coming out of fft ~ is spectral information, not a time-domain signal

With the capture ~ object you can grab some of the output of fft ~ and examine the
frequency analysis of a signal.

• Click on one of the ezdac~ objects to turn audio on.

When audio is turned on, dspstate ~ sends the MSP sampling rate out its middle outlet. We
use this number to calculate a frequency that has a period of exactly 512 samples. This is the
fundamental frequency of the FFT itself. If we send a wave of that frequency into fft ~, each
time slice would contain exactly one cycle of the waveform. We will actually use a cosine
wave at ten times that frequency as the test tone for our analysis.

The test tone is at 10 times the base frequency of the FFT time slice

In the upper left corner of the Patcher window shows a very simple use of fft ~. The analysis
is stored in a capture ~ object, and an ifft ~ object transforms the analysis back into an audio
signal. (Ordinarily you would not transform and inverse-transform an audio signal for no
reason like this. The ifft ~ is used in this patch simply to demonstrate that the analysis-
resynthesis process works.)

• Click on the toggle  in the upper left part of the patch to hear the resynthesized
sound. Click on the toggle  again to close the gate~. Now double-click on the
capture ~ object in that part of the patch to see the analysis performed by fft ~.



Analysis: Using the FFT Tutorial 24

MSP Tutorial 137

In the capture ~ text window, the first 512 numbers are all 0.0000. That is the output of fft ~
during the first time slice of its analysis. Remember, the analysis it sends out is always of the
previous  time slice. When audio was first turned on, there was no previous audio, so fft ~’s
analysis shows no signal.

• Scroll past the first 512 numbers. (The numbers in capture ~’s text window are
grouped in blocks, so if your signal vector size is 256 you will have two groups of
numbers that are all 0.0000.) Look at the second time slice of 512 numbers.

Each of the 512 numbers represents a harmonic of the FFT frequency itself, starting at the
0th harmonic (0 Hz). The analysis shows energy in the eleventh number, which represents
the 10th harmonic of the FFT, 10 /512 the sampling rate—precisely our test frequency. (The
analysis also shows energy at the 10th number from the end, which represents 502/ 512 the
sampling rate. This frequency exceeds the Nyquist rate and is actually equivalent to - 10 /512 of
the sampling rate.)

Technical detail :  An FFT divides the entire available frequency range into as many
bands (regions) as there are samples in each time slice. Therefore, each set of 512
numbers coming out of fft ~ represents 512 divisions of the frequency range from 0
to the sampling rate. The first number represents the energy at 0 Hz, the second
number represents the energy at 1/512 the sampling rate, the third number represents
the energy at 2/ 512 the sampling rate, and so on.

Note that once we reach the Nyquist rate on the 257th number ( 256/ 512 of the
sampling rate), all numbers after that are folded back  down from the Nyquist rate.
Another way to think of this is that these numbers represent negative frequencies
that are now ascending from the (negative) Nyquist rate. Thus, the 258th number is
the energy at the Nyquist rate minus 1/512 of the sampling rate (which could also be
thought of as -255/ 512 the sampling rate). In our example, we see energy in the 11th
frequency region ( 10 /512 the sampling rate) and the 503rd frequency region
(- 256/ 512 - -246/ 512 = - 10 /512 the sampling rate).

It appears that fft ~ has correctly analyzed the signal. There’s just one problem...

Practical problems of the FFT

The FFT assumes that the samples being analyzed comprise one cycle of a periodic wave. In
our example, the cosine wave was the 10th harmonic of the FFT’s fundamental frequency, so
it worked fine. In most cases, though, the 512 samples of the FFT will not be precisely one
cycle of the wave. When that happens, the FFT still analyzes the 512 samples as if they were
one cycle of a waveform, and reports the spectrum of that  wave. Such an analysis will contain
many spurious frequencies not actually present in the signal.

• Close the text window of capture ~. With the audio still on, set the “Test Frequency”
number box  to 1000. This also triggers the clear message in the upper left corner of
the patch to empty the capture ~ object of its prior contents. Double-click once
again on capture ~, and scroll ahead in the text window to see its new contents.



Tutorial 24 Analysis: Using the FFT

138 MSP Tutorial

The analysis of the 1000 Hz tone does indeed show greater energy at 1000 Hz—in the 12th
and 13th frequency regions if your MSP sampling rate is 44,100 Hz—but it also shows
energy in virtually every other region. That’s because the waveform it analyzed is no longer
a sinusoid. (An exact number of cycles does not fit precisely into the 512 samples.) All the
other energy shown in this FFT is an artifact of the “incorrect” interpretation of those 512
samples as one period of the correct waveform.

To resolve this problem, we can try to “taper” the ends of each time slice by applying an
amplitude envelope to it, and use overlapping time slices to compensate for the use of the
envelope.

Overlapping FFTs

The lower right portion of the tutorial patch takes this approach of using overlapping time
slices, and applies a triangular amplitude envelope to each slice before analyzing it. (Other
shapes of amplitude envelope are often used for this process. The triangular window is
simple and quite effective.) In this way, the fft ~ object is viewing each time slice through a
triangular window  which tapers its ends down, thus filtering out many of the false
frequencies that would be introduced by discontinuities.

Overlapping triangular windows (envelopes) applied to a 100 Hz cosine wave

To accomplish this windowing and overlapping of time slices, we must perform two FFTs,
one of which is offset 256 samples later than the other. (Note that this part of the patch will
only work if your current MSP Signal Vector size is 256 or less, since fft ~ can only be offset
by a multiple of the vector size.) The offset of an FFT can be given as a (third) typed-in
argument to fft ~, as is done for the fft ~ object on the right. This results in overlapping time
slices.



Analysis: Using the FFT Tutorial 24

MSP Tutorial 139

One FFT is taken 256 samples later than the other

The windowing is achieved by multiplying the signal by a triangular waveform (stored in
the buffer ~ object) which recurs at the same frequency as the FFT—once every 512
samples. The window is offset by 1/ 2 cycle (256 samples) for the second fft ~.

• Double-click on the buffer ~ object to view its contents. Then close the buffer ~
window and double-click on the capture ~ object that contains the FFT of the
windowed signal. Scroll past the first block or two of numbers until you see the FFT
analysis of the windowed 1000 Hz tone.

As with the unwindowed FFT, the energy is greatest around 1000 Hz, but here the
(spurious) energy in all the other frequency regions is greatly reduced by comparison with
the unwindowed version.

Signal processing using the FFT

In this patch we have used the fft ~ object to view and analyze a signal, and to demonstrate the
effectiveness of windowing the signal and using overlapping FFTs. However, one could also
write a patch that alters the values in the signal coming out of fft ~, then sends the altered
analysis to ifft ~ for resynthesis. An implementation of this frequency-domain filtering
scheme will be seen in a future tutorial.

Summary

The fast Fourier transform (FFT) is an algorithm for transforming a time-domain digital
signal into a frequency-domain representation of the relative amplitude of different
frequency regions in the signal. An FFT is computed using a relatively small excerpt of a
signal, usually a slice of time 512 or 1024 samples long. To analyze a longer signal, one
performs multiple FFTs using consecutive (or overlapping) time slices.

The fft ~ object performs an FFT on the signal it receives, and sends out (also in the form of a
signal) a frequency-domain analysis of the received signal. The only object that understands
the output of fft ~ is ifft ~ which performs an inverse FFT to synthesize a time-domain signal
based on the frequency-domain information. One could alter the signal as it goes from fft ~
to ifft ~, in order to change the spectrum.



Tutorial 24 Analysis: Using the FFT

140 MSP Tutorial

The FFT only works perfectly when analyzing exactly one cycle (or exactly an integer number
of cycles) of a tone. To reduce the artifacts produced when this is not the case, one can
window the signal being analyzed by applying an amplitude envelope to taper the ends of each
time slice. The amplitude envelope can be applied by multiplying the signal by using a
cycle ~ object to read a windowing function from a buffer ~ repeatedly at the same rate as the
FFT itself (i.e., once per time slice).



Processing: Delay lines Tutorial 25

MSP Tutorial 141

Effects achieved with delayed signals

One of the most basic yet versatile techniques of audio processing is to delay a signal and
mix the delayed version with the original signal. The delay time can range from a few
milliseconds to several seconds, limited only by the amount of RAM you have available to
store the delayed signal.

When the delay time is just a few milliseconds, the original and delayed signals interfere and
create a subtle filtering effect but not a discrete echo. When the delay time is about 100 ms
we hear a “slapback” echo effect in which the delayed copy follows closely behind the original.
With longer delay times, we hear the two signals as discrete events, as if the delayed version
were reflecting off a distant mountain.

This tutorial patch delays each channel of a stereo signal independently, and allows you to
adjust the delay times and the balance between direct signal and delayed signal.

Creating a delay line: tapin~ and tapout~

The MSP object tapin ~ is a buffer that is continuously updated so that it always stores the
most recently received signal. The amount of signal it stores is determined by a typed-in
argument. For example, a tapin ~ object with a typed-in argument of 1000 stores the most
recent one second of signal received in its inlet.

A 1-second delay buffer tapped 500 and 1000 ms in the past

The only object to which the outlet of tapin ~ should be connected is a tapout ~ object. This
connection links the tapout ~ object to the buffer stored by tapin ~. The tapout ~ object “taps
into” the delayed signal at certain points in the past. In the above example, tapout ~ gets the
signal from tapin ~ that occurred 500 ms ago and sends it out the left outlet; it also gets the
signal delayed by 1000 ms and sends that out its right outlet. It should be obvious that
tapout ~ can’t get signal delayed beyond the length of time stored in tapin ~.

A patch for mixing original and delayed signals

The tutorial patch sends the sound coming into the computer to two places: directly to the
output of the computer and to a tapin ~- tapout ~ delay pair. You can control how much
signal you hear from each place for each of the stereo channels, mixing original and delayed
signal in whatever proportion you want.



Tutorial 25 Processing: Delay lines

142 MSP Tutorial

• Turn audio on and send some sound in the input jacks of your computer. Set the
number box  marked “Output Level” to a comfortable listening level. Set the “Left
Delay Time” number box  to 500 and the “Right Delay Time” to 1000.

At this point you don’t hear any delayed signal because the “Direct Level” for each channel is
set at 1 and the “Delay Level” for each channel is set at 0. The signal is being delayed, but you
simply don’t hear it because its amplitude is scaled to 0.

Direct signal is on full; delayed signal is turned down to 0

The hslider  in the left part of the Patcher window serves as a balance fader between a “Dry”
(all direct) output signal and a “Wet” (fully processed) output signal.

• Drag the hslider  to the halfway point so that both the direct and delayed signal
amplitudes are at 0.5. You hear the original signal in both channels, mixed with a
half-second delay in the left channel and a one-second delay in the right channel.

Equal balance between direct signal and delayed signal

• You can try a variety of different delay time combinations and wet-dry levels. Try
very short delay times for subtle comb filtering effects. Try creating rhythms with
the two delay times (with, for example, delay times of 375 and 500 ms).

Changing the parameters while the sound is playing can result in clicks in the sound because
this patch does not protect against discontinuities. You could create a version of this patch



Processing: Delay lines Tutorial 25

MSP Tutorial 143

that avoids this problem by interpolating between parameter values with line ~ or number ~
objects.

In future tutorial chapters, you will see how to create delay feedback, how to use
continuously variable delay times for flanging and pitch effects, and other ways of altering
sound using delays, filters, and other processing techniques.

Summary

The tapin ~ object is a continuously updated buffer which always stores the most recently
received signal. Any connected tapout ~ object can use the signal stored in tapin ~, and
access the signal from any time in the past (up to the limits of tapin ~’s storage). A signal
delayed with tapin ~ and tapout ~ can be mixed with the undelayed signal to create discrete
echoes, early reflections, or comb filtering effects.



Tutorial 26 Processing: Delay lines with feedback

144 MSP Tutorial

Delay emulates reflection

You can delay a signal for a specific amount of time using the tapin ~ and tapout ~ objects.
The tapin ~ object is a continually updated buffer that stores the most recent signal  it has
received, and tapout ~ accesses that buffer at one or more specific points in the past.

Delaying a signal with tapin ~ and tapout ~

Combining a sound with a delayed version of itself is a simple way of emulating a sound
wave reflecting off of a wall before reaching our ears; we hear the direct sound followed
closely by the reflected sound. In the real world some of the sound energy is actually absorbed
by the reflecting wall, and we can emulate that fact by reducing the amplitude of the delayed
sound, as shown in the following example.

Scaling the amplitude of a delayed signal, to emulate absorption

Technical detail:  Different materials absorb sound to varying degrees, and most materials
absorb sound in  a way that is frequency-dependent. In general, high frequencies get
absorbed more than low frequencies. That fact is being ignored here, but will be considered
in a later Tutorial on reverberation.

Delaying the delayed signal

Also, in the real world there ’s usually more than one surface that reflects sound. In a room,
for example, sound reflects off of the walls, ceiling, floor, and objects in the room in myriad
ways, and the reflections are in turn reflected off of other surfaces. One simple way to model
this “reflection of reflections” is to feed the delayed signal back into the  delay line (after first
“absorbing” some of it).



Processing: Delay lines with feedback Tutorial 26

MSP Tutorial 145

Delay with feedback

A single feedback delay line like the one above is too simplistic to sound much like any real
world acoustical situation, but it can generate a number of interesting effects. Stereo delay
with feedback is implemented in the example patch for this tutorial. Each channel of audio
input is delayed, scaled, and fed back into the delay line.

Stereo delay with individual delay times and feedback amounts

• Set the number box  marked “Output Level” to 1., and move the hslider  to its
middle position so that the “Direct Level” and “Delay Level” number box es read
0.5. Turn audio on, and send some sound into the audio input of the computer.
Experiment with different delay times and feedback amounts. For example, you can
use the settings shown above to achieve a blurring effect. Increase the feedback
amounts for a greater resonant ringing at the rate of feedback (1000 divided by the
delay time). Increase the delay times to achieve discrete echoes. You can vary the
Dry/Wet mix with the hslider .

Note that any time you feed audio signal back into a system, you have a potential for
overloading the system. That’s why it’s important to scale the signal by some factor less than
1.0 (with the *~ objects and the “Feedback” number box es) before feeding it back into the



Tutorial 26 Processing: Delay lines with feedback

146 MSP Tutorial

delay line. Otherwise the delayed sound will continue indefinitely and even increase as it is
added to the new incoming audio.

Controlling amplitude: normalize~

Since this patch contains user-variable level settings (notably the feedback levels) and since
we don’t know what sound will be coming into the patch, we can’t really predict how we will
need to scale the final output level. If we had used a *~ object just before the ezdac ~ to scale
the output amplitude, we could set the output level, but if we later increase the feedback
levels, the output amplitude could become excessive. The normalize ~ object is good for
handling such unpredictable situations.

The normalize ~ object allows you to specify a peak (maximum) amplitude that you want
sent out its outlet. It looks at the peak amplitude of its input, and calculates the factor by
which it must scale the  signal in order to keep the peak amplitude at the specified maximum.
So ,with normalize ~ the peak amplitude of the output will never exceed the specified
maximum.

normalize ~ sends out the current input * peak output / peak input

One potential drawback of normalize ~ is that a single loud peak in the input signal can cause
normalize ~ to scale the entire signal way down, even if the rest of the input signal is very
soft. You can give normalize ~ a new peak input value to use, by sending a number or a reset
message in the left inlet.

• Turn audio off and close the Patcher window before proceeding to the next chapter.

Summary

One way to make multiple delayed versions of a signal is to feed the output of tapout ~ back
into the input of tapin ~, in addition to sending it to the DAC. Because  the fed back delayed
signal will be added to the current incoming signal at the inlet of tapin ~, it’s a good idea to
reduce the output of tapout ~ before feeding it back to tapin ~.

In a patch involving addition of signals with varying amplitudes, it’s often difficult to
predict the amplitude of the summed signal that will go to the DAC. One way to control the
amplitude of a signal is with normalize ~, which uses the peak amplitude of an incoming
signal  to calculate how much it should reduce the amplitude before sending the signal out.



Processing: Flange Tutorial 27

MSP Tutorial 147

Variable delay time

So far, we have been delaying signals for a fixed amount of time using tapin ~ and tapout ~.
You can change the delay time of any tap in the tapout ~ object by sending a new number in
the proper inlet; however, this will cause a discontinuity in the output signal at the instant
when then new delay time is received, because tapout ~ suddenly begins tapping a new
location in the tapin ~ buffer.

Changing the delay time creates a discontinuity in the output signal

On the other hand, it’s possible to provide a new delay time to tapout ~ using a continuous
signal instead of a discrete Max message. We can use the line ~ object to make a continuous
transition between two delay times (just as we did to make continuous changes in amplitude
in Tutorial 2).

Providing delay time in the form of a signal

Technical detail:  Note that when the delay time is being changed by a continuous signal,
tapout ~ has to interpolate between the old delay time and the new delay time for every
sample of output. Therefore, a tapout ~ object has to do much more computation whenever
a signal  is connected to one of its inlets.

While this avoids the click that could be caused by a sudden discontinuity, it does mean that
the pitch of the output signal will change while the delay time is being changed, emulating the
Doppler effect.

Technical detail:  The Doppler effect occurs when a sound source is moving toward or away
from the listener. The moving sound source is, to some extent, outrunning the wavefronts
of the sound it is producing. That changes the frequency at which the listener receives the
wavefronts, thus changing the perceived pitch. If the sound source is moving toward the
listener, wavefronts arrive at the listener with a slightly greater frequency than they are



Tutorial 27 Processing: Flange

148 MSP Tutorial

actually being produced by the source. Conversely, if the sound source is moving away from
the listener, the wavefronts arrive at the listener slightly less frequently than they are actually
being produced. The classic case of Doppler effect is the sound of an ambulance siren. As the
ambulance passes you, it changes from moving toward you (producing an increase in
received frequency) to moving away from you (producing a decrease in received
frequency). You perceive this as a swift drop in the perceived pitch of the siren.

A delayed signal emulates a reflection of the sound wave. As the delay time decreases, it is as
if the (virtual) reflecting wall were moving toward you. The source of the delayed sound (the
reflecting wall) is “moving toward you”, causing an increase in the received frequency of the
sound. As the delay time increases, the reverse is true; the source of the delayed sound is
effectively moving away from you. That is why, during the time when the delay time is
actually changing, the perceived pitch of the output sound changes.

A pitch shift due to Doppler effect is usually less disruptive than a click that’s caused by
discontinuity of amplitude. More importantly, the pitch variance that results from
continuously varying the delay time can be used to create some interesting effects.

Flanging: Modulating the delay time

Since the delay time can be provided by any signal, one possibility is to use a time-varying
signal like a low-frequency cosine wave to modulate the delay time. In the example below, a
cycle ~ object is used to vary the delay time .

Modulating the delay time with a low-frequency oscillator

The output of cycle ~ is multiplied by 0.25 to scale its amplitude. That signal is multiplied by
the basic delay time of 100 ms, to create a signal with an amplitude ±25. When that signal is
added to the basic delay time, the result is a signal that varies sinusoidally around the basic
delay time of 100, going as low as 75 and as high as 125. This is used to express the delay
time in milliseconds to the tapout ~ object.

When a signal with a time-varying delay (especially a very short delay) is added together
with the original undelayed signal, the result is a continually varying comb filter effect
known as flanging. Flanging can create both subtle and extreme effects, depending on the rate
and depth of the modulation.



Processing: Flange Tutorial 27

MSP Tutorial 149

Stereo flange with feedback

This tutorial patch is very similar to that of the preceding chapter. The primary difference
here is that the delay times of the two channels are being modulated by a cosine wave, as was
described on the previous page. This patch gives you the opportunity to try a wide variety
of flanging effects, just by modifying the different parameters: the wet/dry mix between
delayed and undelayed signal, the left and right channel delay times, the rate and depth of the
delay time modulation, and the amount of delayed signal that is fed back into the delay line of
each channel.

• Send some sound into the audio input of the computer, and  click on the buttons of
the preset  object to hear different effects. Using the example settings as starting
points, experiment with different values for the various parameters. Notice that the
modulation depth can also be controlled by the mod wheel of your synth,
demonstrating how MIDI can be used for realtime control of audio processing
parameters.

The different examples stored in the preset  object are characterized below.

1. Simple thru of the audio input to the audio output. This is just to allow you to test the
input and output.

2. The input signal is combined  equally with delayed versions of itself, using short
(mutually prime) delay times for each channel. The rate of modulation is set for 0.2
Hz (one sinusoid every 5 seconds), but the depth of modulation is initially 0. Use
the mod wheel of your synth (or drag on the “Mod Wheel” number box ) to
introduce some slow flanging.

3. The same as before, but now the modulation rate is 6 Hz. The modulation depth is
set very low for a subtle vibrato effect, but you can increase it to obtain a decidedly
un-subtle wide vibrato.

4. A faster vibrato, with greater depth, and with the delayed signal fed back into the
delay line, creates a complex warbling flange effect.

5. The right channel is delayed a short time for a flange effect and the left channel is
delayed a longer time for an echo effect. Both delay times change sinusoidally over a
two second period, and each delayed signal is fed back into its own delay line
(causing a ringing resonance in the right channel and repeated echoes in the left
channel).

6. Both delay times are set long with considerable feedback to create repeated echoes.
The rate (and pitch) of the echoes is changed up and down by a very slow modulating
frequency—one cycle every 10 seconds.

7. A similar effect, but modulated sinusoidally every 2 seconds.

8. Similar to example 5, but with flanging occurring at an audio rate of 55 Hz, and no
original sound in the mix. The source sound is completely distorted, but the
modulation rate gives the distortion its fundamental frequency.



Tutorial 27 Processing: Flange

150 MSP Tutorial

Summary

You can provide a continuously varying delay time to tapout ~ by sending a signal in its
inlet. As the delay time  varies, the pitch of the delayed sound shifts oppositely. You can use a
repeating low frequency wave to modulate the delay time, achieving either subtle or extreme
pitch-variation effects. When a sound with a varying delay time is mixed with the original
undelayed sound, the result is a variable comb filtering effect known as flanging. The  depth
(strength) of the flanging effect depends primarily on the amplitude of the signal that is
modulating the delay time.



Processing: Chorus Tutorial 28

MSP Tutorial 151

The chorus effect

Why does a chorus of singers sound different from a single singer? No matter how well
trained a group of singers may be, they don’t sing identically. They’re not all singing
precisely the same pitch in impeccable unison, so the random, unpredictable phase
cancellations that occur as a result of these slight pitch differences are thought to be the
source of the chorus effect .

We’ve already seen in the preceding chapter how slight pitch shifts can be introduced by
varying the delay time of a signal. When we mix this signal with its original undelayed
version, we create interference between the two signals, resulting in a constantly varying
filtering effect known as flanging. A less predictable effect called chorusing  can be achieved
by substituting a random fluctuation of the delay time in place of the sinusoidal fluctuation
we used for flanging.

Low-frequency noise: rand~

The noise ~ object (introduced in Tutorial 3) produces a signal in which every sample has a
randomly chosen value between -1 and 1; the result is white noise , with roughly equal energy
at every frequency. This white noise is not  an appropriate signal to use for modulating the
delay time, though, because it would randomly change the delay time so fast (every sample,
in fact) that it would just sound like added noise. What we really want is a modulating signal
that changes more gradually, but still unpredictably.

The rand ~ object chooses random numbers between -1 and 1, but does so  less frequently
than every sample. You can specify the frequency at which it chooses a new random value. In
between those randomly chosen samples, rand ~ interpolates linearly from one value to the
next to produce an unpredictable but more contiguous signal.

Random values chosen every sample Random values chosen less frequently

The output of rand ~ is therefore still noise, but its spectral energy is concentrated most
strongly in the frequency region below the frequency at which it chooses its random
numbers. This “low-frequency noise” is a suitable signal to use to modulate the delay time
for a chorusing effect.



Tutorial 28 Processing: Chorus

152 MSP Tutorial

Unpredictable variations using rand ~

The tutorial patch for this chapter is substantially similar to the flanging patch in the
previous chapter. The main difference between the two signal networks is that the cycle ~
object for flanging has been replaced by a rand ~ object for chorusing. The scope ~ object in
this patch is just for visualizing the modulating effect of the rand ~ object.

Multiple delays for improved chorus effect

We can improve this chorus effect by increasing the number of slightly different signals we
combine. One way to do this —as we have done in this patch— is to feed the randomly
delayed signal back into the delay line, where it ’s combined with new incoming signal. The
output of tapout ~ will thus be a combination of the new variably delayed (and variably pitch
shifted) signal and the previously (but differently) delayed/shifted signal.

Increasing the number of “voices” using feedback to the delay line

The balance between these signals is determined by the settings for “LFeedback” and
“RFeedback”, and the combination of these signals and the undelayed signal  is balanced by
the “DryWetMix” value. To obtain the  fullest “choir” with this patch, we chose delay times
(17 ms and 23 ms) and a modulation rate (8 Hz , a period of 125 ms) that are all mutually
prime numbers, so that they are never in sync with each other.



Processing: Chorus Tutorial 28

MSP Tutorial 153

Technical detail:  One can obtain an even richer chorus effect by increasing the number of
different delay taps in tapout ~, and applying a different random modulation to each delay
time.

• Click on the toggle  to turn audio on. Send some sound into the audio input of the
computer to hear the chorusing effect. Experiment by changing the values for the
different parameters. For a radically different effect, try some extreme values (longer
delay times, more feedback, much greater chorus depth, very slow and very fast
modulation rates, etc.).

Summary

The chorus  effect is achieved by combining multiple copies of a sound—each one delayed
and pitch shifted slightly differently—with the original undelayed sound. This can be done
by continual slight random modulation of the delay time of two or more different delay taps.
The rand ~ object sends out a signal of linear interpolation between random values (in the
range -1 to 1) chosen at a specified rate; this signal is appropriate for the type of modulation
required for chorusing. Feeding the delayed signal back into the delay line increases the
complexity and richness of the chorus effect. As with most processing effects, interesting
results can also be obtained by choosing “outrageous” extreme values for the different
parameters of the signal network.



Tutorial 29 Processing: Comb filter

154 MSP Tutorial

Comb filter: comb~

The minimum delay time that can be used for feedback into a delay line using tapin ~ and
tapout ~ is determined by the signal vector size. However, many interesting filtering
formulae require feedback using delay times of only a sample or two. Such filtering
processes have to be programmed within a single MSP object.

An example of such an object is comb ~, which implements a formula for comb filtering .
Generally speaking, an audio filter is a frequency-dependent amplifier; it boosts the
amplitude of some frequency components of a signal while reducing other frequencies. A
comb filter accentuates and attenuates the input signal at regularly spaced frequency
intervals—that is, at integer multiples of some fundamental frequency.

Technical detail:  The fundamental frequency of a comb filter is the inverse of the delay time.
For example, if the delay time is 2 milliseconds (1/ 500 of a second), the accentuation occurs at
intervals of 500 Hz (500, 1000, 1500, etc.), and the attenuation occurs between those
frequencies. The extremity of the filtering effect depends on the factor (between 0 and 1) by
which the feedback is scaled. As the scaling factor approaches 1, the accentuation and
attenuation become more extreme. This causes the sonic effect of resonance (a “ringing”
sound) at the harmonics of the fundamental frequency.

The comb ~ object sends out a signal that is a combination of a)  the input signal, b)  the input
signal it received a certain time ago, and c)  the output signal it sent that same amount of time
ago (which would have included prior delays). In the inlets of comb ~ we can specify the
desired amount of each of these three (a,  b , and c ), as well as the delay time (we’ll call it d).

You can adjust all the parameters of the comb filter

Technical detail:  At any given moment in time (we’ll call that moment t), comb ~ uses the
value of the input signal  ( xt), to calculate the output y t in the following manner.

y t = ax t + bx (t-d)  + cy (t-d)

The fundamental frequency of the comb filter depends on the delay time, and the intensity of
the filtering depends on the other three parameters. Note that the scaling factor for the
feedback (the right inlet) should usually not exceed 1, since that would cause the output of the
filter to increase steadily as a greater and greater signal  is fed back.



Processing: Comb filter Tutorial 29

MSP Tutorial 155

Trying out the comb filter

The tutorial patch enables you to try out the comb filter by applying it to different sounds.
The patch provides you with three possible sound sources for filtering—the audio input of
your computer, a band-limited pulse wave, or white noise—and three filtering options—
unfiltered, comb filter with parameters adjusted manually, or comb filter with parameters
continuously modulated by other signals.

Choose a sound source and route it to the desired filtering using the pop-up menus

• Click on the buttons of the preset  to try out some different combinations, with
example parameter settings. Listen to the effect of the filter, then experiment by
changing parameters yourself. You can use MIDI note messages from your synth to
provide pitch and velocity (frequency and amplitude) information for the pulse
wave, and you can use the mod wheel to change the delay time of the filter.

A comb filter has a characteristic harmonic resonance because of the equally spaced
frequencies of its peaks and valleys of amplification. This trait is particularly effective when
the comb is swept up and down in frequency, thus emphasizing different parts of the source
sound. We can cause this frequency sweep simply by varying the delay time.

Band-limited pulse

The effects of a filter are most noticeable when there are many different frequencies in the
source sound, which can be altered by the filter. If we want to apply a comb filter to a pitched
sound with a harmonic spectrum, it makes most sense to use a sound that has many partials
such as a sawtooth wave or a square wave.

These mathematically ideal waves may be too “perfect” for use as computer sound waves

The problem with such mathematically derived waveforms, though, is that they may actually
be too  rich in high partials. They may have partials above the Nyquist rate that are
sufficiently strong to cause inharmonic aliasing. (This issue is discussed in more detail in
Tutorial 5 .)



Tutorial 29 Processing: Comb filter

156 MSP Tutorial

For this tutorial we’re using a waveform called a band-limited pulse. A band-limited pulse
has a harmonic spectrum with equal energy at all harmonics, but has a limited number of
harmonics  in order to prevent aliasing. The waveform used in this tutorial patch has ten
harmonics of equal energy, so its highest frequency component has ten times the frequency
of the fundamental. That means that we can use it to play fundamental frequencies up to
2,205 Hz  if our sampling rate is 44,100 Hz. (Its highest harmonic would have a frequency
of 22, 050 Hz, which is equal to the Nyquist rate.) Since the highest key of a 61-key MIDI
keyboard plays a frequency of 2,093 Hz, this waveform will not cause aliasing if we use that
as an upper limit.

Playing a band-limited pulse wave with MIDI

Technical detail:  In an idealized (optimally narrow) pulse wave, each cycle of the waveform
would consist of a single sample with a value of 1, followed by all samples at 0. This would
create a harmonic spectrum with all harmonics at equal amplitude, continuing upward
infinitely. It’s possible to make an MSP signal  network that calculates—based on the
fundamental frequency and the sampling rate—a band-limited pulse signal containing the
maximum number of possible harmonics without foldover. In this case, though, we have
chosen just to  use a stored waveform containing ten partials.

Velocity-to-amplitude conversion: gain~

MIDI-to-amplitude conversionThe subpatch p Pulse_Wave contains a simple but effective
way to play a sound in MSP via MIDI. It uses a poly  object to implement voice stealing,
limiting the incoming MIDI notes to one note at a time. (It turns off the previous note by
sending it out with a velocity of 0 before it plays the incoming note.) It then uses mtof  to
convert the MIDI note number to the correct frequency value for MSP, and it uses the MSP
object gain ~ to scale the amplitude of the signal according to the  MIDI velocity.



Processing: Comb filter Tutorial 29

MSP Tutorial 157

Converting MIDI pitch and velocity data to frequency and amplitude information for MSP

The gain ~ object takes both a signal and a number in its left inlet. The number is used as an
amplitude factor by which to scale the signal before sending it out. One special feature of
gain ~ (aside from its utility as a user interface object for scaling a signal) is that it can
convert the incoming numbers from a linear progression to a logarithmic or exponential
curve. This is very appropriate in this instance, since we want to convert the linear velocity
range (0 to 127) into an exponential amplitude curve (0 to 1) that corresponds roughly to
the way that we hear loudness. Each change of velocity by 10 corresponds to a change of
amplitude by 6 dB. The other useful feature of gain ~ is that, rather than changing amplitude
abruptly when it receives a new number in its left inlet, it takes a few milliseconds to
progress gradually to the new amplitude factor. The time it takes to make this progression
can be specified by sending a time, in milliseconds, in the right inlet. In this patch, we
simply use the default time of 20 ms.

• Choose one of the preset example settings, and choose “Pulse Wave” from the
“Sound Source” pop-up menu. Play long notes with the MIDI keyboard. You can
also obtain a continuous sound at any amplitude and frequency by sending numbers
from the pitch and velocity number box es (first velocity, then pitch) into the inlets
of the p Pulse_Wave subpatch.

Varying parameters to the filter

As illustrated in this patch, it’s usually best to change the parameters of a filter by using a
gradually changing signal instead of making an abrupt change with single number. So
parameter changes made to the “Adjusted By Hand” comb ~ object are sent first to a line ~
object for interpolation over a time of 25 ms.

The “Modulated” comb ~ object has its delay time varied at low frequency according to the
shape of the band-limited  pulse wave (just because it’s a more interesting shape than a
simple sinusoid). The modulation could actually be done by a varying signal of any shape.
You can vary the rate of this modulation using the mod wheel of your synth (or just by
dragging on the number box ). The gain of the x  and y  delays (the two rightmost inlets) is
modulated by a sine wave ranging between 0.01 and  0.99 (for the feedback gain) and a



Tutorial 29 Processing: Comb filter

158 MSP Tutorial

cosine wave ranging from 0.01 to 0.49 (for the feedforward gain). As the amplitude of one
increases, the other decreases.

• Experimenting with different combinations of parameter values may give you ideas
for other types of modulation you might want to design in your own patches.

Summary

The comb ~ object allows you to use very short feedback delay times to comb filter a signal.
A comb filter creates frequency-dependent increases and decreases of amplitude in the signal
that passes through it, at regularly spaced (ie., harmonically related) frequency intervals.
The frequency interval is determined by the inverse of the delay time. The comb filter is
particularly effective when the delay time (and thus the frequency interval) changes over
time, emphasizing different frequency regions in the filtered signal.

The user interface object gain ~ is useful for scaling the amplitude of a signal according to a
specific logarithmic or exponential curve. Changes in amplitude caused by gain ~ take place
gradually over a certain time (20 ms by default), so that there are no unwanted sudden
discontinuities in the output signal.



Introduction Audio Input and Output

Audio Input and Output 159

Audio input and output with MSP

By default, MSP uses the Sound Manager for audio input and output. It starts up with the
current settings of the Sound Manager as you’ve specified in the Monitors & Sound control
panel.

You can also use MSP with audio interface cards. Some cards provide Sound Manager drivers
for their cards; however, if MSP supports the audio card directly with an MSP audio driver, do
NOT use the card’s Sound Manager drivers.

Your choice of the Sound Manager or direct support for an audio interface card is determined
by the presence of an Audiodriver file in the Max folder. Audiodriver files are found in a folder
located inside your Max folder called audiodrivers. To use a particular interface card, move the
Audiodriver file out of the audiodrivers folder and into the Max folder before launching Max.

If MSP finds no Audiodrivers in the Max folder, it will use the Sound Manager. If it finds an
Audiodriver but there is a problem initializing it—for instance, if you don’t have the interface
card installed in your computer, or you don’t have a required INIT for the interface card
installed in your Extensions folder—MSP will use the Sound Manager. If an Audiodriver file is
present and it is able to initialize properly, MSP will bypass the Sound Manager completely and
work directly with the specified audio interface card.

If you want to switch from one audio input/output system to another, you need to quit Max and
change the Audiodriver file in your Max folder.

The rest of this chapter explains audio input and output in more detail. First, we’ll give you a
tour of the DSP Status window, where all global audio parameters can be changed—even while
the music is playing—and you can get an indication of how hard the CPU is currently working
to produce sound. Then we’ll discuss the details of using the Sound Manager with MSP,
followed by the details of using audio interface cards. Information specific to each of the
currently supported audio interface cards is provided at the end of the chapter.

DSP Status window

All global audio parameters in MSP are displayed in the DSP Status window. To open the DSP
Status window, just double-click on any dac~ or adc ~ object in a locked Patcher window.



Audio Input and Output Introduction

160 Audio Input and Output

Information about MSP is shown in the DSP Status window

The first item in the DSP Status window is a switch for turning MSP audio processing on and
off. Audio can be turned on and off from within a Max patch, as well, so this switch also serves as
an indicator of the current on/off status.

If you’re using an unregistered copy of MSP, this item will indicate Disabled after you have
turned the audio on and off once.

The second item shows what is controlling the audio input and output of MSP. By default, the
audio is handled by the Macintosh Sound Manager, in which case there will be two available
output channels and two input channels. If you have an audio interface card and you install an
MSP driver for it, you will see the name of the driver instead of Sound Manager.

The next item determines the Sound Input source. If you are using the Sound Manager, you will
see a pop-up menu showing the input sources available on your computer. Audio interface
cards do not provide a choice of input sources. Rather, multiple inputs are treated as separate
channels in the adc~ object.

The next three items show how hard your computer is working to produce audio with MSP.
CPU Utilization shows how much of your computer’s total processing power is being devoted to



Introduction Audio Input and Output

Audio Input and Output 161

the audio processing, Signals Used shows the number of internal buffers that were needed by
MSP to connect the signal objects used in the current signal network, and Function Calls gives an
approximate idea of how many calculations are being required for each sample of audio.

You can set the audio sampling rate with the Sampling Rate  pop-up menu. For full-range audio,
the recommended sampling rate is 44.1 kHz. Using a lower rate will reduce the number of
samples that MSP has to calculate, thus lightening your computer’s burden, but it will also
reduce the frequency range. If your computer is struggling at 44.1 kHz, you should try a lower
rate. Note that when using the Sound Manager, both the Input Source and the Sampling Rate can
also be set in the Monitors & Sound (or Sound) control panel. However, MSP ignores a change
in sample rate made with the Monitors & Sound control panel while Max is running.

The Vector Size is how many audio samples MSP calculates at a time. There are two vector sizes
you can control. The I/O Vector Size (I/O stands for input/output) controls the number of
samples that are transferred to the output device (the Sound Manager output or the audio
interface card) at one time. The Signal Vector Size sets the number of samples that are calculated
by all MSP objects at one time. This can be less than or equal to the I/O Vector Size, but not
more. If the Signal Vector Size is less than the I/O Vector Size, for each I/O vector that needs to
be calculated, MSP calculates two or more signal vectors in succession. With an I/O vector size
of 256, and a sampling rate of 44.1 kHz, MSP calculates about 5.8 milliseconds of sound data at a
time.

The I/O Vector Size may have an effect on latency and overall performance. A smaller vector
size may reduce the inherent delay between audio input and audio output, because MSP has to
perform calculations for a smaller chunk of time. On the other hand, there is an additional
computational burden each time MSP prepares to calculate another vector (the next chunk of
audio), so it is easier over-all for the processor to compute a larger vector. However, there is
another side to this story. When MSP calculates a vector of audio, it does so in what is known as
an interrupt. If MSP is running on your computer, whatever you happen to be doing (word
processing, for example) is interrupted and an I/O vector’s worth of audio is calculated and
played. Then the computer returns to its normally scheduled program. If the vector size is large
enough, the computer may get a bit behind and the audio output may start to click because the
processing took longer than the computer expected. Reducing the I/O Vector Size may solve
this problem, or it may not. Optimizing the performance of any particular signal network when
you are close to the limit of your CPU’s capability is a trial-and-error process. That’s why MSP
provides you with a choice of vector sizes.

Note that some audio interface cards do not provide a choice of I/O Vector Sizes

Changing the vector size does not affect the actual quality of the audio itself, unlike changing the
sampling rate, which affects the high frequency response. Changing the signal vector size won’t
have any effect on latency, and will have only a slight effect on overall performance (the larger
the size, the more performance you can expect). However, certain types of algorithms benefit
from a small signal vector size. For instance, the minimum delay you can get from MSP’s delay
line objects tapin ~ and tapout ~ is equal to the number of samples in one signal vector at the
current sampling rate. With a signal vector size of 64 at 44.1 kHz sampling rate, this is 1.45
milliseconds, while at a signal vector size of 1024, it is 23.22 milliseconds.



Audio Input and Output Introduction

162 Audio Input and Output

The Scheduler in Audio Interruptfeature is available with the Sound Manager when you have
Overdrive enabled from Max’s Options menu. It runs the Max control scheduler immediately
after processing an I/O vector’s worth of audio. The control scheduler does things like trigger
the bang  from a repeating metro  object, as well as send out any recently received MIDI data.
Checking the Scheduler in Audio Interrupt option can greatly improve the timing of audio events
that are triggered from control processes or external MIDI input. However, the improvement in
timing is directly related to your choice of I/O Vector Size, since this determines the interval at
which the scheduler runs. For instance, with an I/O Vector Size of 512, the scheduler will run
every 512 samples. At 44.1 kHz, this is every 11.61 milliseconds, which is just at the outer limits
of timing acceptability. With smaller I/O Vector Sizes (256, 128, 64), the timing will sound
“tighter”. Since you can change all of these parameters as the music is playing, you can
experiment to find what sounds acceptable to you.

If you are not doing anything where precise synchronization between the control and audio is
important, leave Scheduler in Audio Interrupt unchecked. You’ll get a bit more overall CPU
performance for signal processing.

Note that the Scheduler in Audio Interrupt feature requires version 3.5.9 or later of Max. It will
not appear in the DSP Status window if you are not using a driver that supports it or a version of
Max that doesn’t allow the feature to be used. Also, it will be disabled if Overdrive is not checked
in the Options menu.



Sound Manager Audio Input and Output

Audio Input and Output 163

Using the Sound Manager with MSP

MSP uses the Sound Manager when there is no MSP Audiodriver file located in the Max folder,
or when all Audiodriver files fail to initialize (for example, when they don’t find the appropriate
hardware or software).

The Monitors & Sound control panel only changes the settings used by the Sound Manager. It
does not affect external audio interface cards, unless those cards are being used with the Sound
Manager driver (which, just to repeat, we don’t recommend unless there is no MSP support for
the audio interface card).

The next figure shows the Sound part of the Monitors & Sound control panel.

Sound settings in the Monitors & Sound control panel



Audio Input and Output Sound Manager

164 Audio Input and Output

On most Mac OS computers and system versions, the following controls in Monitors & Sound
will affect MSP:

The volume (the Sound Out level)

The Sound Out level affects the volume of the sound coming from MSP. Note that for
computers equipped with RCA line output jacks (such as the Macintosh 8500 and 8600), the
Sound Out level affects these connections as well as the headphone-style jack found on all
computers.

The sampling rate (Sound Output quality)

This setting just stores a user preference for the desired sampling rate that is read by applications
such as MSP when they start up. So, if you change this setting in the Monitors & Sound control
while MSP is running, nothing will change in MSP.

However, you can change the sampling rate while MSP is running using the DSP Status window
in MSP. Double-click on any dac~ or adc ~ object in a locked Patcher window to see the DSP
Status window, then choose the desired sampling rate from the pop-up menu.

Even though Monitors & Sound refers to the sampling rate as the Sound Output quality, MSP
uses the same sampling rate for sound input and output. If it didn’t, incoming sound would be
distorted and transposed when you listened to it.

When using the Sound Manager, MSP always starts up using the sampling rate set in the
Monitors & Sound control panel. However, when you choose a different sampling rate in MSP’s
DSP Status window, the setting in Monitors & Sound is not affected.

The Sound Input source

The Sound Input source sets the source of audio signals to the adc ~ or ezadc~ input objects in
MSP. The Monitors & Sound control panel will not let you change the Sound Input source
while MSP (or any other application that is using Sound Input) is running. However, MSP will
let you can change it in the DSP Status window. Unlike the sampling rate, if you change the
Sound Input source by using the DSP Status window in MSP, that will change Monitors &
Sound’s setting (with one exception as noted below).

Different computer models have different Sound Input sources. A desktop machine with a CD-
ROM will usually let you choose between Internal CD (or CD) and Microphone. The latter
refers to the line-level mini stereo jack on the back of the computer. The fact that it’s line-level
(not mic-level) means you need to use either a line input source (such as a CD player), a
microphone that puts out line level (such as the one that came with your computer), or the
output of a mixer to which a microphone has been connected. If the computer has an internal
microphone (for example, a PowerBook), Sound Input sources might be listed as Internal
Microphone (the built-in mic), Expansion Bay (a CD-ROM drive), and External Audio
Input—or Line In—(the mini stereo jack on the back of the computer). Machines with “AV”
features also provide a choice of the AV Connector; this refers to the red-and-white RCA jacks



Sound Manager Audio Input and Output

Audio Input and Output 165

on the back of the AV-equipped computer. Note that while the AV Connector is an explicit
audio input choice, the AV Connector output is always the same as the output from your
computer’s mini-stereo jack.

If you are using an audio interface card and have installed the Sound Manager driver for it in the
Extensions folder, the name of the card might be present in the pop-up menu of Sound Input
sources. For example, the Sound Manager driver for a Digidesign card would be listed as
Digidesign. To select a Sound Manager driver in OS 8.0 and later, you may need to use the
Sound control panel from an earlier system.

In Power Macintosh G3 models and System 8.1, the Monitors & Sound control panel behaves
differently than in other computers. If you don’t have a Sound Manager driver for an audio
interface card installed, the Sound Input source is called the Sound Monitoring Source. If you
do have a driver installed, pop-up menus for both the Sound Input source and the Sound
Monitoring Source are present. However, you can’t choose the audio interface card in either
item’s pop-up menu. One workaround is to use a Sound control panel from an older system. It
appears that the Sound Monitoring Source will always be set to None when Max is launched.
However, you can set it to something while Max is running, which changes what MSP uses as its
audio input. After you do so, choosing a Sound Input source in MSP’s DSP Status window has
no effect until you turn the Sound Monitoring Source to None again. If the Sound Input source
menu is present in Monitors & Sound, MSP will use the choice in that pop-up menu as its
Sound Input source when it starts up. If only the Sound Monitoring Source pop-up menu is
present, the selection is used for MSP’s sound input only if it is not None. If it is None, then the
previously selected choice (if any) that you made in MSP is used.

Another difference is that inserting an Audio CD into a G3 while MSP is running will set MSP’s
sound input to the CD, whether that’s what you wanted or not. What’s more, changing the
input source with the pop-up menu in the DSP Status window has no effect. Sound Monitoring
Source listed in the Monitors & Sound control panel changes to CD as well. Ejecting the CD
returns the Sound Monitoring Source to None and MSP regains control over the selection of its
sound input.

One difference that could be either useful or irritating is that the Sound Monitoring Source and
the output of MSP are mixed together on a G3, something that is not true on other computers.
Note that this is only true is you change Sound Monitoring Source or insert a CD while Max is
running, since launching Max always sets the Sound Monitoring Source to none.

The Sound Output destination

If you have an audio interface card installed in your computer, and you’re not using Mac OS 8,
you will see a pop-up menu allowing you to pick either the Built-in audio output or the card’s
audio output. When you choose an audio card as a Sound Output destination, the list of
sampling rates may change or disappear entirely.

The Monitors & Sound control panel will let you change the Sound Output destination while
MSP is running, but it has no effect. There is no way to change the Sound Output destination
from within MSP.



Audio Input and Output Sound Manager

166 Audio Input and Output

You can find additional information about Sound Manager drivers for specific cards in the next
section.



Audio Interface Cards Audio Input and Output

Audio Input and Output 167

Using audio interface cards

This section discusses how to use MSP with audio interface cards. Doing so completely bypasses
the Sound Manager, the Monitors & Sound control panel, and all of the idiosyncrasies of the
Mac OS support for sound. However, each card introduces its own idiosyncrasies and
limitations; these are mentioned in the sections below that deal with each brand of audio
hardware.

Direct MSP support for an audio card has nothing to do with the Sound Manager, so you do not
need to choose your audio card for Sound Input or Output in the Monitors & Sound Control
panel. Indeed, in some cases, you will need to disable the Sound Manager driver or INIT for the
card before MSP can address it directly.

Using an audio card has a slight detrimental effect on the amount of DSP that can be done by
MSP in comparison with the Sound Manager. There are two reasons for this. First, data must be
transferred across a slow PCI bus (rather than just to a memory location as with the Sound
Manager), and in many cases the computer ends up waiting for the completion of this task. So,
there is less CPU time available for signal processing. Second, many cards use 24-bit input and
output, so there is simply more memory being shoved around. For the CPU, moving large
amounts of memory around is expensive in comparison with calculating signal values.

The audiodrivers folder

The MSP Installer places the plug-in drivers that let MSP use various audio interface cards in a
folder called audiodrivers located inside your Max folder. All drivers are inoperative as long as
they remain inside the audiodrivers folder.



Audio Input and Output Audio Interface Cards

168 Audio Input and Output

The audiodrivers folder holds all the drivers, but hides them from MSP

To use an Audiodriver file, you must remove it from the audiodrivers folder and place it in the
Max folder (the same folder that contains the Max Audio Library and the Max application).
MSP will attempt to load the driver when it starts up. Normally, if one driver fails to initialize
because it can’t find the right hardware, the next one found in the Max folder (in alphabetical
order) is tried. However, certain drivers will crash the computer under certain circumstances if
they so much as search for their hardware (and find someone else’s). For this reason, all drivers
should be kept safely out of the way in the audiodrivers folder unless you’re using them.

When MSP starts up, you will see messages such as the following in the Max window.

If MSP is successful in loading an audio driver:

Searching for audio drivers...
Trying Direct I/O MSP Audiodriver...
MSP: Using Direct I/O MSP Audiodriver

If MSP is not successful in loading an audio driver:

Searching for audio drivers...
Trying Direct I/O MSP Audiodriver...
MSP: Using Sound Manager



Audio Interface Cards Audio Input and Output

Audio Input and Output 169

There may also be some kind of error message printed by the driver explaining that it couldn’t
find the hardware or initialize it properly.

INITs for audio cards

To use MSP with an audio interface card, you may need to install an INIT for that card in the
Extensions folder in your System Folder. This INIT either was supplied with the card when you
bought it or can be found in the MSP audiodrivers folder. The notes on each audio card below
will tell you what is required. After placing the INIT in your Extensions folder and restarting the
computer (if necessary), take the appropriate audio driver file out of the audiodrivers folder and
place it in the Max folder, then open the Max application.

Changing audio settings

When you use an audio interface card, the only way to change its settings is with the DSP Status
window in MSP. Double click on any dac~ or adc~ object in a locked Patcher window to open
the DSP Status window. With most cards, you’ll be able to change the sampling rate (affecting
both output and input) and the I/O Vector Size. (See the discussion of vector size earlier in this
chapter.) No card has the option of changing the Sound Input source; the best implementation
is usually to provide all the card’s inputs at once as different signal outputs from an adc~ object.

Using more than two audio channels

Some audio interface cards support more than two channels of audio I/O. These channels can
be accessed by specifying the channel numbers as typed-in arguments to the adc~ and dac ~
objects. For instance, if you want to send signals to audio channels 9 and 10 on your card, you
would make a dac~ 9 10 object.

Play the received signals on channels 9 and 10 of the audio card

Similarly, an adc~ 9 10 object receives input on channels 9 and 10.

Send out the signals coming in on channels 9 and 10 of the audio card

dac~ and adc ~ can accept up to eight channel number arguments. Since you can have as many
dac~ and adc ~ objects as you like, this doesn’t restrict you from using all 16 channels if you have
them available. The ezdac~ and ezadc~ objects are limited to channels 1 and 2.



Audio Input and Output Audio Card Notes

170 Audio Input and Output

Notes on specific audio cards

The sections below contain information specific to individual audio cards supported by MSP. If
you do not find information about a supported audio card here, please check the MSP Support
page at http://www.cycling74.com/support.

Digidesign Audiomedia II

The Audiomedia II is supported by the file called Direct I/O AM2 MSP Audiodriver. This will
work with version 3.2 of the DigiSystem™ INIT, but version 3.3 or later will not support it.

The Audiomedia II is a Nubus card with two analog channels in and out. You may lose a bit of
processor efficiency using this card versus the Sound Manager, but you’ll gain an improvement
in latency and audio quality. Note that Digidesign support software for this card that MSP uses
is not actively maintained. You need to install DigiSystem™ INIT version 3.2 in order for MSP
to work with the Audiomedia II. DAE is not required. Various versions of DigiSystem™ INIT
are available at the Digidesign web site, http://www.digidesign.com.

Digidesign Sound Drivers is another INIT that depends on DigiSystem™ INIT and allows a
Digidesign card to work with the Sound Manager. If you have the Digidesign Sound Drivers
installed, it doesn’t matter whether they’re selected for use by the Sound Manager in the
Monitors & Sound control panel, and loading them doesn’t interfere with the operation of
MSP.

One thing that could interfere with the operation of the Audiomedia II is if the Direct I/O MSP
Audiodriver (which supports other Digidesign hardware) is in the Max folder and renamed so
that it loads before the Direct I/O AM2 MSP Audiodriver. No error will be returned, the driver
will seem to have loaded correctly, but no sound will be heard. Place only the MSP Digidesign
audio driver appropriate for your hardware in the Max folder.

The Digidesign Sound Drivers that support the Sound Manager are incapable of handling audio
input and output at the same time, yet you can choose Digidesign as both a Sound Input source
and a Sound Output destination in the Monitors & Sound control panel. Since many users will
want to do both audio input and output at the same time, this limitation renders the Digidesign
Sound Drivers for the Sound Manager inappropriate for use with MSP. Use the support
provided by the audio drivers instead.

In comparison to using the Sound Manager, two choices are not available with the Audiomedia
II in the DSP Status window: you can’t change the Input Source (obviously, since there are just
the inputs on the card), and you can’t change the I/O Vector Size. There is a problem with
dropouts when MSP uses I/O Vector Sizes larger than 512 on Digidesign hardware. In any case,
512 samples is the minimum allowable vector size and larger sizes would only increase the audio
input-output latency.



Audio Card Notes Audio Input and Output

Audio Input and Output 171

Digidesign Audiomedia III, ProTools, and d24

Digidesign hardware is supported by the MSP audio driver called Direct I/O MSP Audiodriver.
(Place only the MSP audio driver for Digidesign hardware appropriate for your setup in the
Max folder.)

The Audiomedia III is a Motorola 56002-based PCI-bus card with two analog and two S/PDIF
digital channels in and out. When using the Audiomedia III with MSP, the analog and digital
channels are separate, giving you four distinct input and output channels. You need to install
DigiSystem™ INIT version 3.3 or later in order for MSP to work with Digidesign hardware.
DAE is not required. The latest versions of DigiSystem™ INIT are available at the Digidesign
web site, http://www.digidesign.com.

Digidesign Sound Drivers is another INIT that depends on DigiSystem™ INIT and allows a
Digidesign card to work with the Sound Manager. If you have the Digidesign Sound Drivers
installed, it doesn’t matter whether they’re selected for use by the Sound Manager in the
Monitors & Sound control panel, and loading them doesn’t interfere with the operation of
MSP.

In comparison to the Sound Manager, two choices are not available in the DSP Status window
with Digidesign hardware: you can’t change the Input Source (obviously, since there are just the
inputs on the card), and you can’t change the I/O Vector Size. There is a problem with dropouts
when MSP uses I/O Vector Sizes larger than 512 on Digidesign hardware. In any case, 512
samples is the minimum allowable vector size and larger sizes only increase the audio input-
output latency without any appreciable performance improvement.

Changing the sampling rate while MSP is running could result in increased latency between
audio input and output and possible audio distortion. There are two solutions if this occurs:
You can quit Max and reopen the application; MSP will remember the sampling rate you chose
in the DSP Status window so there will be no need to change it again. Alternatively, change the
sampling rate before turning on the audio for the first time.

If you are using a certain Digidesign hardware, you may not get any audio input or output
unless you configure their driver with the specific audio interface box you are using. To do this,
use the following message

; dsp driver setup

You’ll see a dialog allowing a choice of audio cards, interfaces, and some other options. Note
that you can only use the hardware setup dialog before you turn on the audio for the first time
after launching Max. You only need to do the configuration once; the settings are saved in a
Digidesign preferences file and are global to all applications that use the hardware.

Lucid PCI24

The MSP audio driver file that supports the Lucid PCI24 directly is called the PCI24 MSP
Audiodriver. You will notice a significant performance degradation when using the PCI24 with
MSP. On a typical machine, 25 percent of the CPU is used just to do the I/O (versus about 1-3



Audio Input and Output Audio Card Notes

172 Audio Input and Output

percent for the Sound Manager). However, audio input-output latency is much shorter in
comparison to the Sound Manager.

The Lucid PCI24 is a Motorola DSP56301-based card with two digital input and output
channels. Two different sets of input and output jacks allow either S/PDIF or AES-EBU format
I/O, but not both at the same time. At this time MSP only supports the S/PDIF jacks.

Our testing indicates that a machine containing both a Digidesign Audiomedia III card and a
Lucid PCI24 card will fail to boot.

The PCI24 ships with a Sound Manager driver called the PCI24 Driver. To use the card with
MSP, this file must be disabled and replaced with the PCI24 Driver API found in the MSP
audiodrivers folder. If the PCI24 Driver and the PCI24 Driver API are both present in the
Extensions folder, the former will load first and prevent the latter from working, and MSP will
not be able to use the card directly.

If you have another DSP56301-based card in your computer, ensure that the PCI24 Driver or
PCI24 Driver API INITs are not installed, otherwise you may have strange problems. These
drivers have no idea that the 56301 they see on the PCI bus is not a PCI24, so they load their
DSP code into the card, putting it into a state unrecognizable to the legitimate driver.
Conversely, if you have a PCI24 card installed, do not attempt to use software for another
DSP56301-based card. For instance, trying to initialize the MSP Sonorus StudI/O audio driver
with a PCI24 card installed will freeze the machine.

In the DSP Status window, you cannot change the Input Source, but all other choices are
available. A nice feature is the ability to use a 32K sampling rate.

When making any change in the DSP Status window, it is necessary for MSP to unload the
PCI24 driver and reload it again. This may occasionally cause the audio output to be a rather
loud digital noise signal. Changing the settings again usually corrects the problem.

In the current version of the PCI24 Driver API, there is a problem with an I/O Vector Size of
1024. Setting MSP to use this size causes the audio output to be disabled, the audio output from
the card to be the audio input to the card, and the input to MSP to be mixture of the audio input
to the card and the audio output MSP wanted to have played from the audio output of the card.
All other I/O Vector Sizes listed in the pop-up menu work.

Sonorus StudI/O

The Sonorus StudI/O is a DSP56301-based card with four optical connectors for multi-channel
digital input and output, and an analog monitor output. The card can either be configured for
16 channels as two ADAT inputs and outputs; or for 10 channels as one eight-channel ADAT
input and output and one two-channel S/PDIF input and output.

The StudI/O does not require an INIT in the System Folder. However, there are two separate
audio driver files in the MSP audiodrivers folder that support the card. To use the 10-channel
configuration, use StudI/O 10 ch MSP Audiodriver; to use the 16-channel configuration, use the



Audio Card Notes Audio Input and Output

Audio Input and Output 173

StudI/O 16 ch MSP Audiodriver. Place one of these (but not both) in the Max folder. If you want
to switch configurations, you need to quit Max and exchange the locations of the audio driver
files, putting the one you want to use in the Max folder, and the one you don’t want to use in the
audiodrivers folder.

There are two potential problems with initializing the StudI/O audio driver in MSP. The first
would be the presence of another company’s 56301-based INIT in the Extensions folder. This
causes an error when the StudI/O driver tries to initialize the 56301. The second would be if the
StudI/O driver tries to initialize a 56301 card that isn’t a StudI/O. The computer may freeze.

The analog stereo monitor output of the card consists of all the odd-numbered channels mixed
together in the left channel and all the even-numbered channels mixed together in the right
channel.

To attenuate the level of the monitor, which by default is full-volume and painfully loud if you
just stick some headphones in the jack, use the following:

; dsp driver atten <value>

In this message, <value> is a number between 0 (full volume) and 63 (-63 dB). So, the higher
the number, the softer the volume.

Sending a message directly to the dsp object internal to MSP

You can also set the synchronization mode of the StudI/O with a message to the dsp object.

; dsp driver sync internal

sets the synchronization to internal, which is the default when MSP starts up with the StudI/O.

; dsp driver sync a

sets the synchronization to the A (ADAT) input.

; dsp driver sync b

sets the synchronization to the B input, either ADAT (for 16 channels) or S/PDIF (for 10
channels).

; dsp driver sync wc

sets the synchronization to the Word Clock input.

; dsp driver sync dsp

sets the synchronization to the DSP Timer 1.



Audio Input and Output Audio Card Notes

174 Audio Input and Output

The number of channels will be listed in the DSP Status window as 10 or 16 depending on the
audio driver file you are using. The I/O Vector Size is currently fixed at 1024. The sampling rate
can be either 44.1kHz or 48kHz. Switching the sampling rate while the audio is on is not reliable.
You may need to quit Max and restart before the card will work again.

Korg 1212I/O

The Korg 1212 I/O is supported by the file called 1212 I/O MSP Audiodriver. It provides eight
channels of digital input and output with an ADAT connector, two channels of S/PDIF input
and output, and two channels of analog input and output. In addition, it allows you to sync to
ADAT, word clock, or S/PDIF and can mix the incoming signal of any channel with the output
from the computer. The 1212 I/O boasts the best latency performance of any of the audio
interface cards currently supported by MSP.

MSP requires the 1212 I/O INIT version 1.1 or later to be installed in the Extensions folder.
Version 1.0 will not work. If you need a more recent version of the 1212 I/O software and
manual for the Mac OS, you can get it from the Korg web site at
http://www.korg.com/1212down.html. If you switch from version 1.0 of the INIT to a later
version, you must turn off your computer before any software will function properly with the
new version. Restarting isn’t sufficient.

The Korg card ships with a program called 1212 I/O Utility that sets parameters for how the
output will monitor the input. Do not be confused by this program’s volume faders and routing
options. They do not affect output from the computer—rather, they change the way input
channels are monitored, mixed, and routed. MSP uses a default configuration for the 1212 I/O
that overrides anything you set up in this program. This configuration is as follows:

• Monitors for all inputs are off. All input channels are routed to the corresponding
output channels.

• Sampling rate internally clocked at 44.1 kHz or 48 kHz, depending on what it was set at
the last time you ran MSP.

• Analog input gain set at maximum

By sending messages to the dsp  object internal to MSP, you can change any of these settings (see
next page). The 1212 I/O’s channel assignments in MSP are similar to what you see in the 1212
I/O Utility window:

MSP Channel 1212 I/O Input/Output

1 Analog Left
2 Analog Right
3 S/PDIF Left
4 S/PDIF Right
5 ADAT 1
6 ADAT 2



Audio Card Notes Audio Input and Output

Audio Input and Output 175

7 ADAT 3
8 ADAT 4
9 ADAT 5
10 ADAT 6
11 ADAT 7
12 ADAT 8

The number of channels will be listed in the DSP Status window as 12. The I/O Vector Size is
fixed at 512. The sampling rate can be either 44.1kHz or 48kHz.

Controlling special features of the 1212 I/O

Using the driver message to the dsp object internal to MSP, you can change the settings of the
1212 I/O’s input-output delay, its input monitoring facility, and the synchronization mode.

The offset keyword changes the latency (delay) between audio input and output of the 1212 I/O.
You may wish to do this if you’re hearing audio distortion on the input signal (meaning the
latency is too low), or want to attempt to reduce the latency below the default setting.

; dsp driver offset <n>

In this message, n ranges from 0 to 7. The default setting is n = 4. The smallest delay is apparently
at n = 2, but the largest delay isn’t necessarily at 7.

To change the volume of the input monitor for any input channel, use the vol keyword:

; dsp driver vol <chan> <level>

In this message, <chan> is a number between 1 and 12 corresponding to the source shown in
the table above and <level> is 0 for off (the default) and 127 for 0 dB attenuation (full volume).
When the monitor level is non-zero, the input source will be heard mixed with the MSP output
on the output channel it’s routed to. The following example shows how to use a slider as a fader
on the input monitor for the right Analog channel:

Set the volume of the input monitor for the right Analog channel of Korg 1212 I/O

Input monitor volume changes can be sent while the audio is turned on in MSP, and they will
have an immediate effect. Once again, a reminder that these volume settings are for monitoring
the input to the 1212 I/0, not for changing the volume of the output of MSP.



Audio Input and Output Audio Card Notes

176 Audio Input and Output

To change the output channel for an input channel’s monitor, use the following:

; dsp driver route <input channel> <output channel>

In this message, <input channel> is the MSP channel (1-12) corresponding to the input source
you want to route, and <output channel> is the MSP channel corresponding to the output
where you want to monitor the input. To monitor the S/PDIF inputs on the analog channels,
you would use the following:

; dsp driver route 3 1
; dsp driver route 4 2

Note that volume changes occur on inputs, not outputs. To set the input monitor level you will
be hearing on MSP channels 1 and 2 to full volume in the example above, you need to send the
messages ; dsp driver vol 3 127 and ; dsp driver vol 4 127, not the messages ; dsp driver vol 1 127
and ; dsp driver vol 2 127.

If the audio is turned on when you make a routing change, no immediate effect will be heard.
You need to stop and restart the audio in order for a routing change to take effect.

To set the input gain for the two analog channels, use the following:

; dsp driver inputgain <left> <right>

In this message <left> and <right> are the input gains for the left and right analog channels
(MSP channels 1 and 2). 0 is no attenuation, and 255 is maximum attenuation that mutes the
input.

To set the synchronization mode used by the card, use the following:

; dsp driver sync internal — For internal sync (the default)

; dsp driver sync adat — For ADAT sync

; dsp driver sync word — For Word Clock or S/PDIF sync. Word Clock takes 
priority over S/PDIF sync if both are present.



Multiply two signals *~

MSP Objects 177

Input

signal In left inlet: The signal is multiplied by the signal coming into the right inlet, or a
constant value received in the right inlet.

In right inlet: The signal is multiplied by the signal coming into the left inlet, or a
constant value received in the left inlet.

float or int In left inlet: A factor by which to multiply the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A factor by which to multiply the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to multiply the signal coming into the left
inlet. If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial value is 0
by default.

Output

signal The product of the two inputs.

Examples

Scale a signal’s amplitude by a constant or changing value, or by another audio signal

See Also

/~ Divide one signal by another
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 8 Synthesis: Tremolo and ring modulation



+~ Add signals

178 MSP Objects

Note: Any signal inlet of any MSP object automatically uses the sum of all signals received in
that inlet. Thus, the +~ object is necessary only to show signal addition explicitly, or to add a
float or int offset to a signal.

Input

signal In left inlet: The signal is added to the signal coming into the right inlet, or a
constant value received in the right inlet.

In right inlet: The signal is added to the signal coming into the right inlet, or a
constant value received in the left inlet.

float or int In left inlet: An offset to add to the signal coming into the right inlet. If a signal is also
connected to the left inlet, a float or int is ignored.

In right inlet: An offset to add to the signal coming into the left inlet. If a signal is also
connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial offset to add to the signal coming into the left inlet. If a
signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by default.

Output

signal The sum of the two inputs.

Examples

Mix signals... ...or add a DC offset to a signal

See Also

-~ Subtract one signal from another



Subtract one signal from another -~

MSP Objects 179

Input

signal In left inlet: The signal coming into the right inlet or a constant value received in the
right inlet is subtracted from this signal.

In right inlet: The signal is subtracted from the signal coming into the left inlet, or a
constant value received in the left inlet.

float or int In left inlet: Subtracts the signal coming into the right inlet from this value. If a signal
is also connected to the left inlet, a float or int is ignored.

In right inlet: An amount to subtract from the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial amount to subtract from the signal coming into the left
inlet. If a signal is connected to the right inlet, the argument is ignored. If no
argument is present, and no signal is connected to the right inlet, the initial value is 0
by default.

Output

signal The difference between the two inputs.

Examples

Negative DC offset Subtraction used to invert a signal before adding it in

See Also

+~ Add signals



/~ Divide one signal by another

180 MSP Objects

Note: Division is not a computationally efficient operation. The /~ object is optimized to
multiply a signal coming into the left inlet by the reciprocal of either the initial argument or an
int or float received in the right inlet. However, when two signals are connected, /~ uses the
significantly more inefficient division procedure.

Input

signal In left inlet: The signal is divided by a signal coming into the right inlet, or a constant
value received in the right inlet.

In right inlet: The signal is used as the divisor, to be divided into the signal coming
into the left inlet, or the constant value received in the left inlet.

float or int In left inlet: The number is divided by the signal coming into the right inlet. If a
signal is also connected to the left inlet, a float or int is ignored.

In right inlet: A number by which to divide the signal coming into the left inlet. If a
signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial value by which to divide the signal coming into the left inlet.
If a signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 1 by default.

Output

signal The ratio of the two inputs, i.e., the left input divided by the right input.

Examples

It is more computationally efficient to use an equivalent multiplication when possible

See Also

*~ Multiply two signals



Is less than, comparison of two signals <~

MSP Objects 181

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or a
constant value received in the right inlet. If it is less than the value in the right inlet, 1
is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the left
inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into the
left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left inlet. 1
is sent out if the signal is less than the argument; otherwise, 0 is sent out. If a signal is
connected to the right inlet, the argument is ignored. If no argument is present, and
no signal is connected to the right inlet, the initial value is 0 by default.

Output

signal If the signal in the left inlet is less than the value in the right inlet, 1 is sent out;
otherwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

==~ Is equal to, comparison of two signals
>~ Is greater than, comparison of two signals



==~ Is equal to, comparison of two signals

182 MSP Objects

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or a
constant value received in the right inlet. If it is equal to the value in the right inlet, 1
is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the left
inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into the
left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left inlet. 1
is sent out if the signal is equal to the argument; otherwise, 0 is sent out. If a signal is
connected to the right inlet, the argument is ignored. If no argument is present, and
no signal is connected to the right inlet, the initial value is 0 by default.

Output

signal If the signal in the left inlet is equal to the value in the right inlet, 1 is sent out;
otherwise, 0 is sent out.

Examples

Detect when a signal equals a certain value, or when two signals equal each other

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
change ~ Report signal direction
edge~ Detect logical signal change



Is greater than, comparison of two signals >~

MSP Objects 183

Input

signal In left inlet: The signal is compared to a signal coming into the right inlet, or a
constant value received in the right inlet. If it is greater than the value in the right
inlet, 1 is sent out; otherwise, 0 is sent out.

In right inlet: The signal is used for comparison with the signal coming into the left
inlet.

float or int In right inlet: A number to be used for comparison with the signal coming into the
left inlet. If a signal is also connected to the right inlet, a float or int is ignored.

Arguments

float or int Optional. Sets an initial comparison value for the signal coming into the left inlet. 1
is sent out if the signal is greater than the argument; otherwise, 0 is sent out. If a
signal is connected to the right inlet, the argument is ignored. If no argument is
present, and no signal is connected to the right inlet, the initial value is 0 by default.

Output

signal If the signal in the left inlet is greater than the value in the right inlet, 1 is sent out;
otherwise, 0 is sent out.

Examples

Convert any signal to only 1 and 0 values

See Also

<~ Is less than, comparison of two signals
==~ Is equal to, comparison of two signals
sah~ Sample and hold



abs~ Absolute value of a signal

184 MSP Objects

Input

signal Any signal.

Arguments

None.

Output

signal A signal consisting of samples which are the absolute  (i.e., non-negative) value of
the samples in the input signal.

Examples

Convert negative signal values to positive signal values

See Also

avg~ Signal average



Audio in; analog-to-digital converter adc~

MSP Objects 185

Input

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this adc~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

(mouse) Double-clicking on adc~ opens the DSP Status window.

Arguments

int Optional. One or more numbers specifying which audio input channels will be sent
out the outlet(s). Each argument will cause a corresponding outlet to be created.
You can specify up to sixteen input channels using numbers 1 to 16, but the actual
number of input channels available will depend on the hardware installed in the
computer on which the patch is being used. If the Sound Manager is being used,
there will be two input channels available. Other audio drivers may have additional
channels. If no argument is typed in, adc~ will have two outlets, for input channels 1
and 2.

Output

signal The signal arriving at the computer’s input is sent out, one channel per outlet. If
there are no typed-in arguments, the channels are 1 and 2, numbered left-to-right;
otherwise the channels are in the order specified by the arguments.

Examples

Audio input for processing and recording

See Also

ezadc~ Audio on/off; analog-to-digital converter
dac~ Audio out; digital-to-analog converter
Tutorial 13 Sampling: Recording and playback



allpass~ Allpass filter

186 MSP Objects

Input

signal In left inlet: Any signal to be filtered. The filter mixes the current input sample with
an earlier output sample, according to the formula:

yn = -gxn + xn-(DR/1000) +gyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In middle inlet: Delay time (D) in milliseconds for a past output sample to be added
into the current output.

In right inlet: Gain coefficient (g), for scaling the amount of the input and output
samples to be sent to the output.

float or int The filter parameters in the middle and right inlets may be specified by a float or int
instead of a signal. If a signal is also connected to the inlet, the float or int is ignored.

clear Clears allpass ~’s memory of previous outputs, resetting them to 0.

Arguments

float Optional. Up to four numbers, to set the maximum delay time and initial values for
the delay time D and gain coefficient g. If a signal is connected to a given inlet, the
coefficient supplied as an argument for that inlet is ignored. If no arguments are
present, the maximum delay time defaults to 10 milliseconds.

Output

signal The filtered signal.

Examples

Short delay with feedback to blur the input sound, or longer delay for discrete echos

See Also

biquad ~ Two-pole two-zero filter
comb ~ Comb filter



Allpass filter allpass~

MSP Objects 187

lores ~ Resonant lowpass filter
reson ~ Resonant bandpass filter



avg~ Signal average

188 MSP Objects

Input

bang Triggers a report of the average (absolute) amplitude of the signal received since the
previous bang, and clears avg~’s memory in preparation for the next report.

signal The signal to be averaged.

Arguments

None.

Output

float When bang  is received in the inlet, avg~ reports the average amplitude of the signal
received since the previous bang.

Examples

Report the average (absolute) amplitude of a signal

See Also

meter ~ Visual peak level indicator



Define a switchable part of a signal network begin~

MSP Objects 189

Input

None.

Arguments

None.

Output

signal begin ~ outputs a constant signal of 0. It is used to designate the beginning of a
portion of a signal network that you wish to be turned off when it’s not needed. You
connect the outlet of begin ~ to the signal inlet of another object to define the
beginning of a signal network that will eventually pass through a gate~ or selector ~.
One begin ~ can be used for each gate~ or selector ~ signal inlet. When the signal
coming into gate ~ or selector ~ is shut off, no processing occurs in any of the
objects in the signal network between the begin ~ and the gate~ or selector ~.

Examples

See Also

selector ~ Assign one of several inputs to an outlet
gate ~ Route a signal to one of several outlets
Tutorial 5 Fundamentals: Turning signals on and off



biquad~ Two-pole, two-zero filter

190 MSP Objects

Input

signal In left inlet: Signal to be filtered. The filter mixes the current input sample with the
two previous input samples and the two previous output samples according to the
formula: yn = a0xn + a1xn-1 + a2xn-2 - b1yn-1 - b2yn-2.

In 2nd inlet: Amplitude coefficient a0, for scaling the amount of the current input to
be passed directly to the output.

In 3rd inlet: Amplitude coefficient a1, for scaling the amount of the previous input
sample to be added to the output.

In 4th inlet: Amplitude coefficient a2, for scaling the amount of input sample n-2 to
be added to the output.

In 5th inlet: Amplitude coefficient b1, for scaling the amount of the previous output
sample to be added to the current output.

In right inlet: Amplitude coefficient b2, for scaling the amount of output sample n-2
to be added to the current output.

float The coefficients in inlets 2 to 6 may be specified by a float instead of a signal. If a
signal is also connected to the inlet, the float is ignored.

list The five coefficients can be provided as a list in the left inlet. The first number in the
list is coefficient a0, the next is a1, and so on. If a signal is connected to a given inlet,
the coefficient supplied in the list for that inlet is ignored.

clear Clears biquad ~’s memory of previous inputs and outputs, resetting xn-1, xn-2, yn-1,
and yn-2 to 0.

Arguments

float Optional. Up to five numbers, to set initial values for the coefficients a0, a1, a2, b1,
and b2. If a signal is connected to a given inlet, the coefficient supplied as an
argument for that inlet is ignored.

Output

signal The filtered signal.



Two-pole, two-zero filter biquad~

MSP Objects 191

Examples

Filter coefficients may be supplied as numerical values or as varying signals

See Also

comb ~ Comb filter
reson ~ Resonant bandpass filter



buffer~ Store a sound sample

192 MSP Objects

Input

read Reads an AIFF or Sound Designer II sound file into the sample memory of the
buffer ~. If no symbol argument appears after the word read, a standard open file
dialog is opened showing available AIFF and Sound Designer II files. The word
read, followed by a filename that is located in Max’s file search path, reads that file
into buffer ~ immediately without opening the dialog box. The filename may be
followed by a float indicating a starting time in the file, in milliseconds, to begin
reading. (The beginning of the file is 0.) The starting time may be followed by a float
duration, in milliseconds, of sound to be read into buffer ~. This duration overrides
the current size of the object’s sample memory. If the duration is negative, buffer~
reads in the entire file and resizes its sample memory accordingly. If duration
argument is zero or not present, the buffer ~ object’s sample memory is not resized if
the sound file is larger than the current sample memory size. The duration may be
followed by a number of channels to be read in. If the number of channels is not
specified, buffer ~ reads in the number of channels indicated in the header of the
AIFF or Sound Designer II file. Whether or not the number of channels is specified
in the read message, the previous number of channels in a buffer~  is changed to the
number of channels read from the file.

readagain Reads sound data from the most recently loaded AIFF or Sound Designer II file
(specified in a previous read or replace message).

replace Same as the read message with a negative duration argument. replace, followed by a
symbol , treats the symbol as a filename located in Max’s file search path. If no
argument is present, buffer ~ opens a standard open file dialog showing available
AIFF and Sound Designer II files. Additional arguments specify starting time,
duration, and number of channels as with the read message.

write Saves the contents of buffer ~ into a sound file. A standard file dialog is opened for
naming the file unless the word write is followed by a symbol, in which case the file is
saved in the current default directory, using the symbol as the filename. If the
current format of the buffer~ object is AIFF, the write message will save it as an AIFF
file. If the current format is Sound Designer II, the write message will save it as a
Sound Designer II file. The file format is AIFF by default. If a Sound Designer II file
is opened using the read message, or the buffer ~ was previoulsly saved as a Sound
Designer II file, the file format changes to Sound Designer II.

writeaiff Saves the contents of buffer ~ into an AIFF file. A standard file dialog is opened for
naming the file unless the word write is followed by a symbol, in which case the file is
saved in the current default directory, using the symbol as the filename.

writesd2 Saves the contents of buffer ~ into a Sound Designer II file. A standard file dialog is
opened for naming the file unless the word write is followed by a symbol, in which
case the file is saved in the current default directory, using the symbol as the
filename.



Store a sound sample buffer~

MSP Objects 193

clear Erases the contents of buffer ~.

size The word size, followed by a duration in milliseconds, sets the size of the buffer ~
object’s sample memory. This limits the amount of data that can be stored, unless
this size limitation is overridden by a replace message or a duration argument in a
read message.

sr The word sr, followed by a sampling rate, sets the buffer ~ object’s sampling rate. By
default, the sampling rate is the current output sampling rate, or the sampling rate of
the most recently loaded sound file.

name The word name, followed by a symbol, changes the name by which other objects
such as cycle ~, groove ~, lookup ~, peek~, play ~, record ~, and wave ~ can refer to
the buffer ~. Objects that were referring to the buffer ~ under its old name lose their
connection to it. Every buffer ~ object should be given a unique name; if you give a
buffer ~ object a name that already belongs to another buffer ~, that name will no
longer be associated with the buffer ~ that first had it.

(remote) The contents of buffer ~ can be altered by the peek~ and record ~ objects.

(mouse) Double-clicking on buffer ~ opens an editing window where you can view the
contents of the buffer ~.

Arguments

symbol Obligatory. The first argument must be a name by which other objects can refer to
the buffer ~ to access its contents.

symbol Optional. After the buffer ~’s name, you may type the name of a sound file to load
when the buffer ~ is created.

float or int Optional. After the optional filename argument, a duration may be provided, in
milliseconds, to set the size of the buffer ~, which limits the amount of sound that
will be stored in it. (A new duration can be specified as part of a read message,
however.) If no duration is typed in, the buffer ~ has no sample memory. It does not,
however, limit the size of a sound file that can be read in.

int Optional. After the duration, an additional argument may be typed in to specify the
number of audio channels to be stored in the buffer ~. (This is to tell buffer ~ how
much memory to allocate initially; however, if a sound file with more channels is
read in, buffer ~ will allocate more memory for the additional channels.) The
maximum number of channels buffer ~ can hold is four. By default, buffer ~ has one
channel.



buffer~ Store a sound sample

194 MSP Objects

Output

float When the user clicks or drags with the mouse in buffer ~’s editing window, the
cursor’s time location in the buffer ~, in milliseconds, is sent out the outlet.

Examples

buffer ~ can be used as a waveform table for an oscillator, or as a sample buffer

See Also

cycle ~ Table lookup oscillator
groove ~ Variable-rate looping sample playback
lookup ~ Transfer function lookup table
peek~ Read and write sample values
play ~ Position-based sample playback
record ~ Record sound into a buffer
sfplay~ Play sound file from disk
sfrecord~ Record to sound file on disk
wave~ Variable-size table lookup oscillator
Tutorial 3 Fundamentals: Wavetable oscillator
Tutorial 12 Synthesis: Waveshaping
Tutorial 13 Sampling: Recording and playback



Store a signal to view as text capture~

MSP Objects 195

Input

signal An excerpt of the signal is stored as text for viewing, editing, or saving to a file. (The
length of the excerpt can be specified as a typed-in argument to the object.)

write Saves the contents of capture ~ into a text file. A standard file dialog is opened for
naming the file. The word write , followed by a symbol, saves the file, using the
symbol as the filename, in the same folder as the patch containing the capture ~. If
the patch has not yet been saved, the capture ~ file is saved in the same folder as the
Max application. Note that unlike the text display window, the size of the text file is
not limited to 32,000 characters.

clear Erases the contents of capture ~.

(mouse) Double-clicking on capture ~ opens a window for viewing and editing its contents.

Arguments

f Optional. If the first argument is the letter f, capture ~ stores the first signal samples
it receives, and then ignores subsequent samples once its storage buffer is full. If the
letter f is not present, capture ~ stores the most recent signal samples it has received,
discarding earlier samples if necessary.

int Optional. Limits the number of samples (and thus the length of the excerpt) that can
be held by capture ~. If no number is typed in, capture ~ stores 4096 samples. The
maximum possible number of samples is limited only by the amount of memory
available to the Max application; however, the editing window can only show the
first 32,000 characters. A second number argument may be typed in to set the
precision (the number of digits to the right of the decimal point) with which
samples will be shown in the editing window.

Output

None.

Examples

Capture a portion of a signal as text, to view, save, copy and paste, etc.

See Also

scope ~ Signal oscilloscope



change~ Report signal direction

196 MSP Objects

Input

signal Any signal.

Arguments

None.

Output

signal When the current sample is  greater in value than the previous sample, change ~
outputs a sample of 1. When the current sample is the same as the previous sample,
change ~ outputs a sample of 0. When the current sample is less than the previous
sample, change ~ outputs a sample of -1.

Examples

Detect whether a signal is increasing, decreasing, or remaining constant

See Also

edge~ Detect logical signal transitions
thresh ~ Detect signal above a set value



Limit signal amplitude clip~

MSP Objects 197

Input

signal In left inlet: Any signal, which will be restricted within the minimum and maximum
limits received in the middle and right inlets.

In middle inlet: Minimum limit for the range of the output signal.

In right inlet: Maximum limit for the range of the output signal.

float or int The middle and right inlets can receive a float or int instead of a signal to set the
minimum and/or maximum.

Arguments

float Optional. Initial minimum and maximum limits for the range of the output signal.
If no argument is supplied, the minimum and maximum limits are both initially set
to 0. If a signal is connected to the middle or right inlet, the corresponding
argument is ignored.

Output

signal The input signal is sent out, limited within the specified range. Any value in the
input signal that exceeds the minimum or maximum limit is set equal to that limit.

Examples

Output is a clipped version of the input

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals



comb~ Comb filter

198 MSP Objects

Input

signal In left inlet: Signal to be filtered. The filter mixes the current input sample with
earlier input and/or output samples, according to the formula:

yn = axn + bxn-(DR/1000) + cyn-(DR/1000)

where R is the sampling rate and D is a delay time in milliseconds.

In 2nd inlet: Delay time (D) in milliseconds for a past sample to be added into the
current output.

In 3rd inlet: Amplitude coefficient (a), for scaling the amount of the input sample to
be sent to the output.

In 4th inlet: Amplitude coefficient (b), for scaling the amount of the delayed past
input sample to be added to the output.

In right inlet: Amplitude coefficient (c), for scaling the amount of the delayed past
output sample to be added to the output.

float or int The filter parameters in inlets 2 to 5 may be specified by a float instead of a signal. If a
signal is also connected to the inlet, the float is ignored.

clear Clears comb ~’s memory of previous outputs, resetting them to 0.

Arguments

float Optional. Up to five numbers, to set the maximum delay time and initial values for
the delay time D and coefficients a, b, and and c. If a signal is connected to a given
inlet, the coefficient supplied as an argument for that inlet is ignored. If no
arguments are present, the maximum delay time defaults to 10 milliseconds, and all
other values default to 0.

Output

signal The filtered signal.

Examples

Filter parameters may be supplied as float values or as signals



Comb filter comb~

MSP Objects 199

See Also

allpass ~ Allpass filter
delay ~ Delay line specified in samples
reson ~ Resonant bandpass filter



cos~ Cosine function

200 MSP Objects

Input

signal Input to a cosine function. The input is stated as a fraction of a cycle (typically in the
range from 0 to 1), and is multiplied by 2π before being used in the cosine function.

Arguments

None.

Output

signal The cosine of 2π times the input. The method used in this object to calculate the
cosine directly is typically less efficient than using the stored cosine in a cycle ~
object.

Examples

Cosine of the input (a fraction of a cycle) is calculated and sent out

See Also

cycle ~ Table lookup oscillator
phasor ~ Sawtooth wave generator
wave~ Variable-size table lookup oscillator



Signal sample counter count~

MSP Objects 201

Input

bang If the audio is on, the output signal begins counting from its current minimum
value, increasing by one each sample. If the signal is already currently counting, it
resets to the minimum value and continues upward.

int In left inlet: Sets a new current minimum value, and the output signal begins
counting upward from this value.

int In right inlet: Sets the maximum value. When the count reaches this value, it starts
over at the minium value on the next sample. A value of 0 (the default) eliminates
the maximum, and the count continues increasing without resetting.

stop Causes count ~ to output a signal with its current minimum value.

Arguments

int Optional. The first argument sets initial minimum value for the counter. The default
value is 0. The second argument sets the initial maximum value for the counter, the
default value is 0, which means there is no maximum value.

Output

signal When the audio is first turned on, count ~ always sends out its current minimum
value. When a bang  or int is received, the count begins increasing from the current
minimum value.

Examples

Send out a running count of the passing samples, beginning at a given point

See Also

index ~ Sample playback without interpolation
mstosamps ~ Convert milliseconds to samples
sampstoms ~ Convert samples to milliseconds
Tutorial 13 Sampling: Recording and playback



curve~ Exponential ramp generator

202 MSP Objects

Input

list The first number specifies a target value; the second number specifies an amount of
time, in milliseconds, to arrive at that value; and the optional third number specifies
a curve parameter, for which values from 0 to 1 produce an exponential curve, and
values from -1 to 0 produce a logarithmic curve. The closer to 0 the curve parameter
is, the more the curve resembles a straight line, and the farther away the parameter is
from 0, the more the curve resembles a step. In the specified amount of time, curve ~
generates an exponential ramp signal from the currently stored value to the target
value.

curve ~ accepts up to 42 target-time-parameter triples to generate a series of
exponential ramps. (For example, the message 0 1000 .5 1 1000 -.5 would go from
the current value to 0 in one second, then to 1 in one second.) Once one of the
ramps has reached its target value, the next one starts. A new list, float, or int in the
left inlet clears any ramps that have not yet generated.

float or int In left inlet: The number is the target value, to be arrived at in the time specified by
the number in the middle inlet. If no time has been specified since the last target
value, the time is considered to be 0 and the output signal jumps immediately to the
target value.

In middle inlet: The time, in milliseconds, in which the output signal will arrive at
the target value.

In right inlet: The number is the curve parameter. Values from 0 to 1 produce an
exponential curve, and values from -1 to 0 produce a logarithmic curve. The closer
to 0 the number is, the more the curve resembles a straight line; the farther away the
number is from 0, the more the curve resembles a step.

Arguments

float or int Optional. The first argument sets an initial value for the signal output. The second
argument sets the initial curve parameter. The default values for the initial signal
output and curve parameter are 0.

Output

signal Out left outlet: The current target value, or an exponential curve moving toward the
target value according to the most recently received target value, transition time,
and curve parameter.

bang Out right outlet. When curve ~ has finished generating all of its ramps, bang is sent
out.



Exponential ramp generator curve~

MSP Objects 203

Examples

Curved ramps used as control signals for frequency and amplitude

See Also

line ~ Ramp generator



cycle~ Table lookup oscillator

204 MSP Objects

The cycle ~ object is an interpolating oscillator that reads repeatedly through one cycle of a
waveform, using a wavetable of 512 samples. Its default waveform is one cycle of a cosine wave.
It can use other waveforms by accessing samples from a buffer ~ object. The 513th sample in the
wavetable source (the buffer ~) is used for interpolation beyond the 512th sample. For repeating
waves, it’s usually desirable for the 513th sample to be the same as the first sample, so there will
be no discontinuity when the waveform wraps around from the end to the beginning. If only
512 samples are available, cycle ~ assumes a 513th sample equal to the 1st sample.

Input

signal In left inlet: Frequency of the oscillator. Negative values are allowed.

In right inlet: Phase, expressed as a fraction of a cycle, from 0 to 1. Other values are
wrapped around to stay in the 0 to 1 range. If the frequency is 0, connecting a
phasor ~ to this inlet is an alternative method of producing an oscillator. If the
frequency is non-zero, connecting a cycle ~ or other repeating function to this inlet
produces phase modulation, which is similar to frequency modulation.

float or int In left inlet: Sets the frequency of the oscillator. If there is a signal connected to the
left inlet, this number is ignored.

In right inlet: Sets the phase (from 0 to 1) of the oscillator. Other values wrap around
to stay between 0 and 1. If the frequency remains fixed, cycle ~ keeps track of phase
changes to keep the oscillator in sync with other cycle ~ or phasor ~ objects at the
same frequency. If there is a signal connected to the right inlet, this number is
ignored.

set The word set, followed by the name of a buffer ~ object, changes the wavetable used
by cycle ~. The name can optionally be followed by an int specifying the sample
offset into the named buffer ~ object’s sample memory. cycle ~ uses only the first
(left) channel of a multi-channel buffer ~.

The word set  with no arguments reverts cycle ~ to the use of its default cosine wave.

Arguments

float or int Optional. The initial frequency of the oscillator. If no frequency argument is
present, the initial frequency is 0.

symbol Optional. The name of a buffer ~ object used to store the oscillator’s wavetable. If a
float or int frequency argument is present, the buffer ~ name follows the frequency.
(No frequency argument is required, however.) If no buffer ~ name is given, cycle ~
uses a stored cosine wave.

int Optional. If a buffer ~ name has been given, an additional final argument can used
to specify the sample offset into the named buffer ~ object’s sample memory. cycle ~
only uses the first channel of a multi-channel buffer ~.



Table lookup oscillator cycle~

MSP Objects 205

Output

signal A waveform (cosine by default) repeating at the specified frequency, with the
specified phase.

Examples

Repeated cosine or any other waveform

See Also

buffer ~ Store a sound sample
cos ~ Cosine function
phasor ~ Sawtooth wave generator
wave~ Variable-size table lookup oscillator
Tutorial 2 Fundamentals: Adjustable oscillator
Tutorial 3 Fundamentals: Wavetable oscillator



dac~ Audio out; digital-to-analog converter

206 MSP Objects

Input

signal A signal coming into an inlet of dac~ is sent to the audio output channel
corresponding to the inlet. The signal must be between -1 and 1 to avoid clipping by
the DAC.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

startwindow Turns on audio processing only in the patch in which this dac~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

int A non-zero number is the same as start. 0 is the same as stop.

(mouse) Double-clicking on dac~ opens the DSP Status window.

Arguments

int Optional. One or more numbers specifying which audio output channels will be
played. Each argument will cause a corresponding inlet to be created. You can
specify up to sixteen output channels using numbers 1 to 16, but the actual number
of output channels available will depend on the hardware installed in the computer
on which the patch is being used. If the Sound Manager is being used, there will be
two output channels available. Other audio drivers may have additional channels. If
no argument is typed in, dac~ will have two inlets, for output channels 1 and 2.

Output

None. The signal received in the inlet is played out the corresponding audio output
channel.

Examples

Switch audio on and off, send signal to the audio outputs

See Also

ezdac~ Audio on/off; digital-to-analog converter
adc~ Audio in; analog-to-digital converter
Tutorial 1 Fundamentals: Test tone



Delay line specified in samples delay~

MSP Objects 207

Input

signal In left inlet: The signal to be delayed.

int In right inlet: The  delay time in samples. The delay time cannot be less than 0 (no
delay) nor can it be greater than the maximum delay time set by the argument to
delay ~.

Arguments

int Optional. The first argument sets the maximum delay in samples. This determines
the  amount of memory allocated for the delay line. The default value is 512. The
second argument sets the initial delay time in samples. The default value is 0.

Output

signal The output consists of the input delayed by the specified number of samples. The
difference sbetween delay ~ and tapin ~/tapout ~ are as follows: First, delay times
with delay ~ are specified in terms of samples rather than milliseconds, so they will
change duration if the sampling rate changes. Second, the delay ~ object can reliably
delay a signal a number of samples that is less than a vector size. Finally, unlike
tapin ~ and tapout ~ , you cannot feed the output of delay ~ back to its input. If you
wish to use feedback with short delays, consider using the  comb ~ object.

Examples

Delay signal for a specific number of samples, for echo or filtering effects

See Also

comb ~ Comb filter
tapin ~ Input to a delay line
tapout ~ Output from a delay line



delta~ Signal of sample differences

208 MSP Objects

Input

signal Any signal.

Arguments

None.

Output

signal The output consists of samples that are the difference between the current input
sample and the previous input sample. For example, if the input signal contained
1,.5,2,.5, the output would be 1,-.5,1.5,-1.5.

Examples

Report the difference between one sample and the previous sample

See Also

avg~ Report average amplitude



Report current DSP settings dspstate~

MSP Objects 209

Input

bang Triggers a report out the dspstate ~ object’s outlets, telling whether the audio is on
or off, the current sampling rate, and the signal vector size.

(on/off) The dspstate ~ object reports DSP information whenever the audio is turned on or
off.

signal If a signal is connected to dspstate ~’s inlet, dspstate ~ reports that signal’s sampling
rate and vector size, rather than the global sampling rate and signal vector size.

Arguments

None.

Output

int Out left outlet: If the audio is on or being turned on, 1 is sent out. If the audio is off
or being turned off, 0 is sent out.

float Out middle outlet: Sampling rate of the connected signal or the global sampling
rate.

int Out right outlet: Current signal vector size.

Examples

Trigger an action when audio is turned on or off; use sample rate to calculate timings

See Also

sampstoms ~ Convert samples to milliseconds
mstosamps ~ Convert milliseconds to samples
Tutorial 20 MIDI control: Sampler
Tutorial 24 Analysis: Using the FFT



edge~ Detect logical signal transitions

210 MSP Objects

Input

signal A signal that will change between zero and non-zero values, such as the output of a
signal comparison operator.

Arguments

None.

Output

bang Out left outlet: Sent when the input signal changes from zero to non-zero.
Experimentation indicates that the minimum time between bangs is 25 ms when the
Max scheduler is being used; when the  Scheduler in Audio Interrupt option is
checked in the DSP Status window, the minimum time between bangs is the time
represented by the number of samples in the current input/output vector size.

Out right outlet: Sent when the input signal changes from non-zero to zero. The
output will not happen more often than the time represented by the number of
samples in the current input/output vector size.

Examples

Send a triggering Max message when a significant moment occurs in a signal

See Also

change ~ Report signal direction
thresh ~ Detect signal above a set level



Audio on/off; analog-to-digital converter  ezadc~

MSP Objects 211

Input

(mouse) Clicking on ezadc~ toggles audio processing on or off. Audio on is represented by
the object being hilighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezadc~ equivalent to sending
it the startwindow message. local 0 returns ezadc~ to its default mode where a click
to turn it on is equivalent to the start message.

startwindow Turns on audio processing only in the patch in which this ezadc~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

Arguments

None.

Output

signal Out left outlet: Audio input from channel 1.

Out right outlet: Audio input from channel 2.

Examples

Audio input for processing and recording

See Also

ezdac~ Audio on/off; digital-to-analog converter
adc~ Audio in; analog-to-digital converter



 ezdac~ Audio on/off; analog-to-digital converter

212 MSP Objects

Input

signal In left inlet: The signal is sent to audio output channel 1. The signal in each inlet
must be between -1 and 1 to avoid clipping by the DAC.

In right inlet: The signal is sent to audio output channel 2.

(mouse) Clicking on ezdac~ toggles audio processing on or off. Audio on is represented by
the object being hilighted.

int A non-zero number turns on audio processing in all loaded patches. 0 turns off
audio processing in all loaded patches.

start Turns on audio processing in all loaded patches.

stop Turns off audio processing in all loaded patches.

local The word local, followed by 1, makes a click to turn on ezdac~ equivalent to sending
it the startwindow message. local 0 returns ezdac~ to its default mode where a click
to turn it on is equivalent to the start message.

startwindow Turns on audio processing only in the patch in which this ezdac~ is located, and in
subpatches of that patch. Turns off audio processing in all other patches.

Arguments

None.

Output

None. The signal received in the inlet is sent to the corresponding audio output
channel.

Examples

Switch audio on and off, send signal to the audio outputs

See Also

ezadc~ Audio on/off; analog-to-digital converter



Audio on/off; digital-to-analog converter  ezdac~

MSP Objects 213

adc~ Audio out; digital-to-analog converter
Tutorial 3 Fundamentals: Wavetable oscillator



fft~ Fast Fourier transform

214 MSP Objects

Input

signal In left inlet: The real part of a complex signal that will be transformed.

In right inlet: The imaginary part of a complex signal that will be transformed.

If signals are connected only to the left inlet and left outlet, a real FFT (fast Fourier
transform) will be performed. Otherwise, a complex FFT will be performed.

Arguments

int Optional. The first argument specifies the number of points (samples) in the FFT. It
must be a power of two. The default number of points is 512. The second argument
specifies the number of samples between successive FFTs. This must be at least the
number of points, and must be also be a power of two. The default interval is 512.
The third argument specifies the offset into the interval where the FFT will start.
This must either be 0 or a multiple of the signal vector size. fft ~ will correct bad
arguments, but if you change the signal vector size after creating an fft ~ and the
offset is no longer a multiple of the vector size, the fft ~ will not operate when signal
processing is turned on.

Output

signal Out left outlet: The real part of the Fourier transform of the input. The output
begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the Fourier transform of the input. The
output begins after all the points of the input have been received.

Out right outlet: A sync signal that ramps from 0 to the number of points minus 1
over the period in which the FFT output occurs. You can use this signal as an input
to the index ~ object to perform calculations in the frequency domain. When the
FFT is not being sent out (in the case where the interval is larger than the number of
points), the sync signal is 0.

Examples

Fast Fourier transform of an audio signal

See Also

ifft ~ Inverse fast Fourier transform



Fast Fourier transform fft~

MSP Objects 215

index ~ Sample playback without interpolation
Tutorial 24 Analysis: Using the FFT



ftom Convert frequency to a MIDI note number

216 MSP Objects

The ftom object is not a signal object but it is useful for generating MIDI note values from
frequency-based calculations required by signal objects such as cycle ~ and phasor ~.

Input

float or int A frequency value. The corresponding MIDI pitch value (from 0 to 127) is sent out
the outlet.

Arguments

None.

Output

float The MIDI pitch value that corresponds to the input frequency. Because most
frequencies fall between exact tempered pitches, the output usually has a fractional
part. Only the integer part will be used by MIDI objects which expect an int; the
fractional part will be truncated. The fractional part can potentially be used to
calculate an additional pitch offset for applying MIDI pitch bend.

Examples

Find the MIDI key number to play the same pitch as an MSP oscillator

See Also

mtof Convert a MIDI note number to frequency



Graphical breakpoint function editor  function

MSP Objects 217

The function object is not a signal object but it is useful for graphical input to the line ~ signal
object.

Input

(mouse) You can use the mouse to draw points in a line segment function; the finished
function can then be sent to a line ~ object for use as a control signal in MSP.
Clicking on empty space in the function adds a breakpoint, which you can begin to
move immediately by dragging (unless function has been sent the clickadd 0
message). Clicking on a breakpoint allows you to move the breakpoint by dragging
(unless function has been sent the clickmove 0 message). The X and Y values of the
breakpoint are displayed in the upper part of the object’s box. Shift-clicking on a
breakpoint deletes that point from the function. Command-clicking on a
breakpoint toggles the sustain property of the point. Sustain points are outlined in
white. Whenever an editing operation with the mouse is completed, a bang is sent
out the right outlet.

Points with a Y value of 0 are outlined circles; other points are solid. This allows you
to see at a glance whether a function starts or ends at Y = 0.

float or int The value is taken as an X value and outputs a corresponding Y value out the left
outlet. The Y value is produced by linear floating-point interpolation of the
function. If the X value lies outside the first or last breakpoint, the Y value is 0.

bang Triggers a list output of the current breakpoints from the middle-left outlet
formatted for use by the line ~ object. As an example, if the function contained
breakpoints at X = 1, Y = 0; X = 10, Y = 1; and X = 20, Y = 0, the output would be 0,
1 9 0 10

If there are any sustain points in the function, bang outputs a list of all the points up
to the sustain point. Additional points in the function, up to a subsequent sustain
point or the end point, whichever applies, can be output by sending the next
message. See the description of the next and sustain messages for additional
information.

next The next message continues a list output from the sustain point where the output of
the last bang or next message ended. For instance, if the function contained
breakpoints at (a) X = 1, Y = 0; (b) X = 10, Y = 1; and (c) X = 20, Y = 0, and point b
was a sustain point, a bang  message would output 0, 1 9 and a subsequent next
message would output 1, 0 10. After a next message reaches the end point, a
subsequent next message is equivalent to a bang  message. next is also equivalent to a
bang when no bang has been sent that reached a sustain point, or when a function
contains no sustain points.

list If the list contains two values, a new point is added to the function . The first value is
X, the second is Y.



 function Graphical breakpoint function editor

218 MSP Objects

If the list contains three values, an existing point in the function  is modified. The
first value is the index (starting at 0) of a breakpoint to modify, the second is the new
X value for the breakpoint, and the third is the new Y value for the breakpoint. (If
the index number in the list refers to a breakpoint that does not exist, the message is
ignored.)

nth The word nth, followed by a number, uses the number as the index (starting at 0) of
a breakpoint, and outputs the Y value of the breakpoint out the left outlet. If no
breakpoint with the specified index exists, no output occurs.

clear The word clear by itself erases all existing breakpoints. The word clear can also be
followed by one or more breakpoint indices (starting at 0) to clear selected
breakpoints.

dump Outputs a series of two-item lists, containing the X and Y values for each of the
breakpoints, out the function  object’s middle-right outlet.

range The word range, followed by two float or int values, sets the minimum and
maximum display range for Y values. The actual values of breakpoints are not
modified, so this message could cause breakpoints to disappear from view.

setrange The word setrange, followed by two float or int values, sets the minimum and
maximum display range for Y values, then modifies the Y values of all breakpoints
so that they remain in the same place given the new range.

domain The word domain, followed by a float or int value, sets the maximum displayed X
value. The minimum value is always 0. The actual values of breakpoints are not
modified, so this message could cause breakpoints whose X values are greater than
the new maximum displayed X value to disappear.

setdomain The word setdomain, followed by a float or int value, sets the maximum displayed X
value, then modifies the X values of all breakpoints so that they remain in the same
place given the new domain.

color The word color, followed by a number between 0 and 15, sets the color of the
displayed breakpoints to the specified color. The colors corresponding to the index
are displayed in the Color… dialog in the Max menu.

(Color…) You can change the color of breakpoints by selecting a function  object in an
unlocked Patcher window and choosing Color… from the Max menu.

clickadd The message clickadd 0 prevents the user from adding new breakpoints by clicking.
clickadd 1 allows the user to add new breakpoints. The default behavior allows the
user to add new breakpoints. The current setting is saved with the object when its
Patcher is saved.



Graphical breakpoint function editor  function

MSP Objects 219

clickmove The message clickmove 0 prevents the user from moving existing breakpoints by
dragging them with the mouse. clickmove 1 allows the user to drag breakpoints. The
default behavior allows the user to drag breakpoints. The current setting is saved
with the object when its Patcher is saved.

fix The word fix, followed by a number specifying the index of a point and 0 or 1,
prevents the user from changing the point if the second number is 1, and allows the
user to change the point if the second number is 0. By default, points are moveable
unless clickmove 0 has been sent to disable moving of all points.

sustain The word sustain, followed by number specifying the index of a point and 0 or 1,
turns that point into a sustain point if the second number is 1, or into a regular point
if the second number is 0. By default, points are regular (non-sustain). The behavior
of sustain points is discussed in the description of the bang message above. You can
also toggle the sustain property of a point by command-clicking on it.

(preset) You can save and restore the breakpoint settings of function  using a preset  object.

Arguments

None.

Output

float Out left outlet: The interpolated Y value is sent out in response to a float or int X
value received in the inlet; or a stored Y value is sent out in response to an nth
message.

list Out middle-left outlet: When bang is received, a float is sent out for the first stored Y
value, followed by a list containing pairs of numbers indicating each subsequent
stored Y value and its transition time (the difference between X and the previous X).
This format is intended for input to the line ~ object.

Out middle-right outlet: A series of two-item lists, containing the X and Y values of
each of the function ’s breakpoints, is sent out when a dump message is received.

bang Out right outlet: When a mouse editing operation is completed, a bang is sent out.



 function Graphical breakpoint function editor

220 MSP Objects

Examples

Send line segment information to line ~, or look up (and interpolate) individual Y values

See Also

line ~ Ramp generator
Tutorial 7 Synthesis: Additive synthesis



Exponential scaling volume slider  gain~

MSP Objects 221

Input

signal In left inlet: The input signal to be scaled by the slider.

int In left inlet: Sets the value of the slider, ramps the output signal to the level
corresponding to the new value over the specified ramp time, and outputs the
slider’s value out the right outlet.

float In left inlet: Converted to int.

In right inlet: Sets the ramp time in milliseconds. The default is 10 milliseconds.

bang Sends the current slider value out the right outlet.

set In left inlet: Sets the value of the slider, ramps the output signal to the level
corresponding to the new value over the specified ramp time, but does not output
the slider’s value out the right outlet.

size The word size, followed by a number, sets the range of gain ~ to the number. The
values of the slider will then be 0 to the range value minus 1.

color The word color, followed by a number from 0 to 15, sets the color of the striped
center portion of gain ~ to one of 16 object colors, which are also available by
choosing Color… from the Max menu.

Arguments

Three gain ~ parameters can be set by selecting it in an unlocked Patcher window
and choosing Get Info… from the Max menu. The first is the range, the second is
the base value, and the third is the increment. In the following expression that
calculates the output scale factor based on the input value (the same as the linedrive
object), the range is a, the base value is b, the increment is c, the input is x, e is the
base of the natural logarithm (approx. 2.718282) and the output is y.

y = b e-a log c ex log c

For more information about these parameters, see the linedrive object.

The default values of range (158), base (7.94231), and increment (1.071519)
provide for a slider where 128 is full scale (multiplying by 1.0), 0 produces a zero
signal, and 1 is 75.6 dB below the value at 127. A change of 10 in the slider produces
a 6 dB change in the output. In addition, since the range is 158, slider values from
129 to 157 provide 17.4  dB of headroom. When the slider is at 157, the output
signal is 17.4 dB louder than the input signal.



gain~ Exponential scaling volume slider

222 MSP Objects

Output

signal Out left outlet: The input signal, scaled by the current slider value as x in the
equation shown above.

int Out right outlet: The current slider value, when dragging on the slider with the
mouse or when gain ~ receives an int or float in its left inlet.

Examples

Specialized fader to scale a signal exponentially or logarithmically

See Also

linedrive Scale integers for use with line ~



Route a signal to one of several outlets gate~

MSP Objects 223

Input

int In left inlet: Determines the outlet that will send out the signal coming in the right
inlet. If the number is 0 or negative, the right inlet is shut off and a zero signal is sent
out. If the number is greater than the number of outlets, the signal is sent out the
rightmost outlet. If a signal is connected to the left inlet, gate~ ignores ints or floats
received in its left inlet.

float Converted to int.

signal In left inlet: If a signal is connected to the left inlet, gate ~ operates in a mode that
uses signal values to determine the outlet that will receive its input signal (the signal
coming in the right inlet). If the signal coming in the left inlet is 0 or negative, the
inlet is shut off and a zero signal is sent out. If it is greater than or equal to 1, but less
than 2, the input signal goes to the left outlet. If the signal is greater than or equal to 2
but less than 3, the input signal goes to the next outlet to the right, and so on. If the
signal in the left inlet is greater than the number of outlets, the rightmost outlet is
used.

In right inlet: The input signal to be passed through to one of the gate ~ object’s
outlets, according to the most recently received int or float in the left inlet, or the
value of the signal coming in the left inlet.

If the signal network connected to the right inlet of gate~ contains a begin ~
object—and a signal is not connected to the left inlet of the gate ~—all processing
between the begin ~ outlet and the gate ~ inlet will be turned off when gate ~ is shut
off.

Arguments

int Optional. The first argument specifies the number of outlets. The default is 1. The
second argument sets the outlet that will initially send out the input signal. The
default is 0, where all signals are shut off and zero signals are sent out all outlets. If a
signal is connected to the left inlet, the second argument is ignored.

Output

signal Depending on the value of the left inlet (either signal or number), one of the object’s
outlets will send out the input signal and rest will send out zero signals, or (if the
inlet is closed) all outlets will send out zero signals.



gate~ Route a signal to one of several outlets

224 MSP Objects

Examples

gate ~ routes the input signal to one of its outlets, or shuts it off entirely

See Also

selector ~ Assign one of several inputs to an outlet
begin ~ Define a switchable part of a signal network
Tutorial 4 Fundamentals: Routing signals



Variable-rate looping sample playback groove~

MSP Objects 225

Input

signal In left inlet: Defines the sample increment for playback of a sound from a buffer ~. A
sample increment of 0 stops playback. A sample increment of 1 plays the sample at
normal speed. A sample increment of -1 plays the sample backwards at normal
speed. A sample increment of 2 plays the sample at twice the normal speed. A
sample increment of .5 plays the sample at half the normal speed. The sample
increment can change over time for vibrato or other types of speed effects.

If a loop start and end have been defined for groove ~ and looping is turned on,
when the sample playback reaches the loop end the sample position is set to the loop
start and playback continues at the current sample increment.

In middle inlet: Sets the starting point of the loop in milliseconds.

In right inlet: Sets the end point of the loop in milliseconds.

int or float In left inlet: Sets the sample playback position in milliseconds. 0 sets the playback
position to the beginning.

In middle inlet: Sets the starting point of the loop in milliseconds. If a signal is
connected to the inlet, int and float numbers are ignored.

In right inlet: Sets the end point of the loop in milliseconds. If a signal is connected
to the inlet, int and float numbers are ignored.

startloop Causes groove ~ to begin sample playback at the starting point of the loop. If no
loop has been defined, groove ~ begins playing at the beginning.

loop The word loop, followed by 1, turns on looping. loop 0 turns off looping. By default,
looping is off.

set The word set, followed by a symbol, switches the buffer ~ object containing the
sample to be used by groove ~ for playback.

Arguments

symbol Obligatory. Names the buffer ~ object containing the sample to be used by groove ~
for playback.

int Optional. A second argument may specify the number of output channels: 1, 2, or 4.
The default number of channels is 1. If the buffer ~ being played has fewer channels
than the number of groove ~ output channels, the extra channels output a zero
signal. If the buffer ~ has more channels, channels are mixed.



groove~ Variable-rate looping sample playback

226 MSP Objects

Output

signal Out left outlet: Sample output. If groove ~ has two or four output channels, the left
outlet plays the left channel of the sample.

Out middle outlets: Sample output. If groove ~ has two or four output channels, the
middle outlets play the channels other than the left channel.

Out right outlet: Sync output. During the loop portion of the sample, this outlet
outputs a signal that goes from 0 when the loop starts to 1 when the loop ends.

Examples

See Also

buffer ~ Store a sound sample
play ~ Position-based sample playback
record ~ Record sound into a buffer
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler



Inverse fast Fourier transform ifft~

MSP Objects 227

Input

signal In left inlet: The real part of a complex signal that will be inverse transformed.

In right inlet: The imaginary part of a complex signal that will be inverse
transformed.

If signals are connected only to the left inlet and left outlet, a real IFFT (inverse fast
Fourier transform) will be performed. Otherwise, a complex IFFT will be
performed.

Arguments

int Optional. The first argument specifies the number of points (samples) in the IFFT.
It must be a power of two. The default number of points is 512. The second
argument specifies the number of samples between successive IFFTs. This must be
at least the number of points, and must be also be a power of two. The default
interval is 512. The third argument specifies the offset into the interval where the
IFFT will start. This must either be 0 or a multiple of the signal vector size. ifft ~ will
correct bad arguments, but if you change the signal vector size after creating an ifft ~
and the offset is no longer a multiple of the vector size, the ifft ~ will not operate
when signal processing is turned on.

Output

signal Out left outlet: The real part of the inverse Fourier transform of the input. The
output begins after all the points of the input have been received.

Out middle outlet: The imaginary part of the inverse Fourier transform of the input.
The output begins after all the points of the input have been received.

Out right outlet: A sync signal that ramps from 0 to the number of points minus 1
over the period in which the IFFT output occurs. When the IFFT is not being
output (in the case where the interval is larger than the number of points), the sync
signal is 0.

Examples

Using fft ~ and ifft ~ for analysis and resynthesis



ifft~ Inverse fast Fourier transform

228 MSP Objects

See Also

fft ~ Fast Fourier transform
Tutorial 24 Analysis: Using the FFT



Sample playback without interpolation index~

MSP Objects 229

Input

signal In left inlet: The sample index to read from a buffer ~ object’s sample memory.

int In right inlet: The channel (1-4) of the buffer ~ to use for output. By default, index ~
uses the first channel of the buffer ~.

set The word set, followed by the name of a buffer ~ object, causes index ~ to read from
that buffer ~.

(mouse) Double-clicking on index ~ opens an editing window where you can view the
contents of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ object whose sample memory is used by index ~ for
playback.

int Optional. Following the name of the buffer ~, you may specify which channel to use
within the associated buffer ~. The default channel is 1.

Output

signal The output consists of samples at the sample indices specified by the input. No
interpolation is performed if the input sample index is not an integer.

Examples

Look up specific samples in the buffer ~, using index ~

See Also

buffer ~ Store a sound sample
fft ~ Fast Fourier transform
Tutorial 13 Sampling: Recording and playback



info~ Report information about a sample

230 MSP Objects

Input

bang In left inlet: Causes a report of information about a sample contained in the
associated buffer ~ object.

(mouse) Double-clicking on info ~ opens an editing window where you can view the contents
of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ object for which info ~ will report information.

Output

Most of the information reported by info ~ is taken from the sound file most recently
read into the associated buffer ~. If this information is not present, only the sampling
rate is sent out the left outlet. No output occurs for any item that’s missing from the
sound file.

float Out left outlet: The sampling rate of the sample.

Out 3rd outlet: Sustain loop start, in milliseconds.

Out 4th outlet: Sustain loop end, in milliseconds.

Out 5th outlet: Release loop start, in milliseconds.

Out 6th outlet: Release loop end, in milliseconds.

Out 7th outlet: Total time of the associated buffer ~ object, in milliseconds.

Out 8th outlet: Name of the most recently read audio file.

list Out 2nd outlet: Instrument information about the sample, as follows:

1. The MIDI pitch of the sample.
2. The detuning from the original MIDI note number of the sample,

in pitch bend units.
3. The lowest MIDI note number to use when playing this sample.
4. The highest MIDI note number to use when playing this sample.
5. The lowest MIDI velocity to use when playing this sample.
6. The highest MIDI velocity to use when playing this sample.
7. The gain of the sample (0-127).



Report information about a sample info~

MSP Objects 231

Examples

Check sample rate of a sample; use other information contained in a sample

See Also

buffer ~ Store a sound sample
mstosamps ~ Convert milliseconds to samples
sfinfo ~ Report sound file information
Tutorial 14 Sampling: Playback with loops
Tutorial 20 MIDI control: Sampler



kink~ Distort a sawtooth waveform

232 MSP Objects

Input

signal In left inlet: The input to kink ~ should be a sawtooth waveform output from a
phasor ~ object that repeatedly goes from 0 to 1.

In right inlet: The multiplier that affects the slope of the output between an output
(Y) value of 0 and 0.5. After the output reaches 0.5, the waveform will increase to 1
so that the entire output moves from 0 to 1 in the same period of time as the input. A
slope multiplier of 1 (the default) produces no distortion Slope multipliers below 1
have a slower rise to 0.5 than the input, and slope multipliers above 1 have a faster
rise to 0.5 than the input.

float In right inlet: Same as signal. If a signal is attached to the right inlet, float input is
ignored.

Arguments

float Optional. Sets the default slope multiplier. If a signal is attached to the right inlet,
this argument is ignored.

Output

signal The output of kink ~ should be fed to the right inlet of cycle ~ (at zero frequency) to
produce a distorted sine wave (a technique known as phase distortion synthesis). As
the slope multiplier in the right inlet of kink ~ deviates from 1, additional harmonics
are introduced into the waveform output of cycle ~. If the slope multiplier is rapidly
increased and then decreased using a line ~, the output of cycle ~ may resemble an
attack portion of an instrumental sound.

Examples

Typical use of kink ~ between phasor ~ and cycle ~.

See Also

phasor ~ Generate a sawtooth wave
cycle ~ Table lookup oscillator



Scale integers for use with line~ linedrive

MSP Objects 233

The linedrive object is not a signal object but it is useful for controlling the line ~ object.

Input

int or float In left inlet: The number is converted according to the following expression

y = b e-a log c ex log c

where x is the input, y is the output, a, b, and c are the three typed-in arguments, and
e is the base of the natural logarithm (approx. 2.718282).

The output is a two-item list containing y followed by the delay time most recently
received in the right inlet.

int In right inlet: Sets the current delay time appended to the scaled output. A
connected line ~ object will ramp to the new target value over this interval.

Arguments

int or float Obligatory. The first argument is the maximum input value, the second argument is
the maximum output value. The third argument specifies the nature of the scaling
curve. The smaller the third argument (from 1 down toward 0), the more
logarithmic the curve is; the larger it is (from 1 upward), the more steeply
exponential the curve is. Only positive numbers are appropriate for the third
argument. The fourth argument is the initial delay time in milliseconds. This value
can be changed via the right inlet.

Output

list When an int or float is received in the left inlet, a list is sent out containing a scaled
version of the input (see the formula above) and the current delay time.

Examples

Send information for an exponential curve to line ~

See Also

line ~ Ramp generator



line~ Ramp generator

234 MSP Objects

Input

list The first number specifies a target value and the second number specifies a total
amount of time (in milliseconds) in which line ~ should reach the target value. In the
specified amount of time, line ~ generates a ramp signal from its current value to the
target value.

line ~ accepts up to 64 target-time pairs in a list, to generate compound ramps. (An
example would be 0 1000 1 1000, which would go from the current value to 0 in a
second, then to 1 in a second.) Once one of the ramps has reached its target value,
the next one starts. A subsequent list, float, or int in the left inlet clears all ramps yet to
be generated.

float or int In left inlet: The number is the target value, to be arrived at in the time specified by
the number in the right inlet. If no time has been specified since the last target value,
the time is considered to be 0 and the output signal jumps immediately to the target
value.

In right inlet: The number is the time, in milliseconds, in which the output signal
will arrive at the target value.

Arguments

float or int Optional. Sets an initial value for the signal output. The default value is 0.

Output

signal Out left outlet: The current target value, or a ramp moving toward the target value
according to the currently stored value and the target time.

bang Out right outlet. When line ~ has finished generating all of its ramps, bang is sent
out.

Examples

Linearly changing signal, or a function made up of several line segments

See Also

curve ~ Exponential ramp generator
Tutorial 2 Fundamentals: Adjustable oscillator



Logarithm of a signal log~

MSP Objects 235

Input

signal In left inlet: log ~ sends out a signal that is the logarithm of the input signal, to the
base specified by the typed-in argument or the value most recently received in the
right inlet. If a value in the signal is less than or equal to 0, log ~ sends out a value of
0.00000001.

float or int In right inlet: Sets the base of the logarithm. The default is 0, which is equivalent to
the natural logarithm (log to the base e, or 2.71828182). log to the base of 1 is always
0.

Arguments

float or int Optional. Sets the base of the logarithm. The default value is 0.

Output

signal The logarithm of the input signal to the base specified by the initial argument or the
value most recently received in the right inlet.

Examples

Logarithm of a signal, to a specified base; can be used for creating curves

See Also

pow ~ Signal power function
curve ~ Exponential ramp generator
sqrt ~ Square root of a signal



lookup~ Transfer function lookup table

236 MSP Objects

Input

signal In left inlet: Signal values are mapped by amplitude to values stored in a buffer ~.
Each sample in the incoming signal within the range -1 to 1 is mapped to a
corresponding value in the current table size number of samples of the buffer ~.
Signal values between -1 and 0 are mapped to the first half of the total number of
samples after the current sample offset. Signal values between 0 and 1 are mapped to
the next half of the samples. Input amplitude exceeding the range from -1 to 1
results in an output of 0.

In middle inlet: Sets the offset into the sample memory of a buffer ~ used to map
samples coming in the left inlet. The sample at the specified offset corresponds to an
input value of -1.

In right inlet: Sets the number of samples in a buffer ~ used for the table. Samples
coming in the left inlet between -1 and 1 will be mapped by amplitude to the
specified range of samples. The default value is 512. lookup ~ changes the table size
before it computes each vector but not within a vector. It uses the first sample in a
signal vector coming in the right inlet as the table size.

int or float The settings of offset and table size can be changed with an number in the middle or
right inlets. If a signal is connected to one of these inlets, a number in the
corresponding inlet is ignored.

set The word set, followed by a symbol, changes the associated buffer ~ object.

(mouse) Double-clicking on lookup ~ opens an editing window where you can view the
contents of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ object whose sample memory is used by lookup ~ for
table lookup.

int Optional. After the buffer ~ name, you may specify the sample offset in the sample
memory of the buffer ~ used for a signal value of -1. The default offset is 0. The offset
value is followed by an optional table size that defaults to 512. lookup ~ always uses
the first channel in a multi-channel buffer ~.

Output

signal Each sample in the incoming signal within the range -1 to 1 is mapped to a
corresponding position in the current table size number of samples of the named
buffer ~ object, and the stored value is sent out..



Transfer function lookup table lookup~

MSP Objects 237

Examples

See Also

buffer ~ Store a sound sample
peek~ Read and write sample values
Tutorial 12 Synthesis: Waveshaping



lores~ Resonant lowpass filter

238 MSP Objects

Input

signal In left inlet: Any signal to be filtered.

In middle inlet: Sets the lowpass filter cutoff frequency.

In right inlet: Sets a “resonance factor” between 0 (minimum resonance) and 1
(maximum resonance). Values very close to 1 may produce clipping with certain
types of input signals.

int or float An int or float can be sent in the middle or right inlets to change the cutoff frequency
or resonance. If a signal is connected one of the inlets, a number received in that
inlet is ignored.

clear Clears the filter’s memory. Since lores ~ is a recursive filter, this message may be
necessary to recover from blowups.

Arguments

int or float Optional. Numbers set the initial cutoff frequency and resonance. The default
values for both are 0. If a signal is connected to the middle or right inlet, the
argument corresponding to that inlet is ignored.

Output

signal The filtered input signal. The equation of the filter is

yn = scale * xn - c1 * yn-1 + c2 * yn-2

where scale, c1, and c2 are parameters calculated from the cutoff frequency and
resonance factor.

Examples

Specify cutoff frequency and resonance of lowpass filter

See Also

biquad ~ Two pole, two zero filter
reson ~ Resonant bandpass filter



Visual peak level indicator  meter~

MSP Objects 239

Input

signal The peak amplitude of the incoming signal is displayed by the LEDs of the on-
screen level meter.

interval The word interval, followed by a number, sets the update time interval, in
milliseconds, of the meter ~ display. The minimum update interval is 10
milliseconds, the maximum is 2 seconds, and the default is 100 milliseconds. This
message also sets the rate at which meter ~ sends out the peak value received in that
time interval.

(mouse) When the Patcher window is unlocked, you can re-orient a meter ~ from horizontal
to vertical by dragging its resize area and changing its shape.

Arguments

None.

Output

float The peak (absolute) value received in the previous update interval is sent out the
outlet when audio processing is on.

Examples

meter ~ displays and sends out the peak amplitude of a signal

See Also

scope ~ Signal oscilloscope
Tutorial 22 Analysis: Viewing signal data



mstosamps~ Convert milliseconds to samples

240 MSP Objects

Input

float or int Millisecond values received in the inlet are converted to a number of samples at the
current sampling rate and sent out the object’s right outlet. The output might
contain a fractional number of samples. For example, at 44.1 kHz sampling rate, 3.2
milliseconds is 141.12 samples.

signal Incoming millisecond values in the signal are converted to a number of samples at
the current sampling rate and output as a signal out the mstosamps ~ object’s left
outlet. The output may contain a fractional number of samples.

Arguments

None.

Output

signal Out left outlet: The number of samples corresponding to the millisecond values in
the input signal.

float Out right outlet: The number of samples corresponding to the millisecond value
received as a float or int in the inlet.

Examples

Time expressed in milliseconds comes out expressed in samples

See Also

dspstate ~ Report current DSP settings
sampstoms ~ Convert samples to milliseconds



Convert a MIDI note number to frequency mtof

MSP Objects 241

The mtof object is not a signal object but it is useful for controlling signal objects that use
frequency—such as cycle ~ and phasor ~—from MIDI.

Input

float or int A MIDI note number value from 0 to 127. The corresponding frequency is sent out
the outlet.

Arguments

None.

Output

float The frequency corresponding to the received MIDI pitch value.

Examples

Use MIDI note number to provide frequency value for an oscillator

See Also

ftom Convert frequency to a MIDI note number
Tutorial 19 MIDI control: Synthesizer



mute~ Disable signal processing in a subpatch

242 MSP Objects

Input

int 1 turns off the signal processing in all objects contained in the subpatch connected
to the mute ~ object’s outlet, 0 turns it back on.

Arguments

None.

Output

Connect the mute ~ object’s outlet to any inlet of a subpatch you wish to control.
You can connect mute ~ to as many subpatch objects as you wish; however, mute~
does not work with bpatcher s.

Examples

You can mute all processing in any patcher or other subpatch

See Also

begin ~ Define a switchable part of a signal network
pass ~ Define subpatch signal output
Tutorial 5 Fundamentals: Turning signals on & off



White noise generator noise~

MSP Objects 243

Input

None.

Arguments

None.

Output

signal The noise ~ object generates a signal consisting of uniformly distributed random
(white noise) values between -1 and 1.

Examples

big sweep of filters 
center frequency

noise~

reson~

4.

cycle~ 0.25

+~ 1.

*~ 100.

4000.

dac~

noise~

snapshot~

generate random floats 
between -1 and 1

-0.06303

use noise to 
excite a filter

16.noise~

phasor~

sah~ 0.5

*~ 2000.

cycle~

generate 
random 
frequencies 
for an 
oscillator

Random samples create white noise, which can be filtered in various ways

See Also

biquad~ Two-pole, two-zero filter
reson ~ Resonant bandpass filter
Tutorial 3 Fundamentals: Wavetable oscillator



normalize~ Scale on the basis of maximum amplitude

244 MSP Objects

Input

signal In left inlet: The input signal is normalized—scaled so that its peak amplitude is
equal to a specified maximum.

In right inlet: The maximum output amplitude; an over-all scaling of the output.

float In right inlet: The maximum output amplitude may be sent as a float instead of a
signal. If a signal is connected to the right inlet, a float received in the right inlet is
ignored.

reset In left inlet: The word reset, followed by a number, resets the maximum input
amplitude to the number. If no number follows reset, or if the number is 0, the
maximum input amplitude is set to 0.000001.

Arguments

float Optional. The initial maximum output amplitude. The default is 1.

Output

signal The input signal is scaled by the maximum output amplitude divided by the
maximum input amplitude.

Examples

When precise scaling factor varies or is unknown, normalize ~ sets peak amplitude

See Also

*~ Multiply two signals



Signal monitor and constant generator  number~

MSP Objects 245

number ~ has two different display modes. In “Signal Monitor Mode” it displays the value of the
signal received in the left inlet. In “Signal Output Mode” it displays the value of the float or int
most recently received in the left inlet, or entered directly into the number ~ box (the signal
being sent out the left outlet).

Input

signal Any signal, the value of which is sampled and sent out the right outlet at regular
intervals. When number ~ is in Signal Monitor display mode, the signal value is
displayed.

float In left inlet: The value is sent out the left outlet as a constant signal. When number ~
is in Signal Output display mode, the value is displayed. If the current ramp time is
non-zero, the output signal will ramp between its previous value and the newly set
value.

In right inlet: Sets a ramp time in milliseconds. The default time is 0.

int Converted to float.

list The first number sets the value of the signal sent out the left outlet, and the second
number sets the ramp time in milliseconds.

(mouse) Clicking on the triangular area at the left side of number ~ will toggle between Signal
Monitor display mode (green waveform) and Signal Output display mode (yellow
or green downward arrow). When in Signal Output display mode, clicking in the
area that displays the number changes the value of the signal sent out the left outlet
of number ~ and/or selects it for typing.

(typing) When a number ~ is highlighted (indicated by a yellow downward arrow),
numerical keyboard input changes its value. Clicking the mouse or pressing Return
or Enter stores a pending typed number and sends it out the left outlet as the new
signal value.

allow The word allow, followed by a number, sets what display modes can be used. allow 1
restricts number ~ to signal output display mode. allow 2 restricts number ~ to input
monitor display mode. allow 3 allows both modes, and lets the user switch between
them by clicking on the left triangular area of number ~.

mode The word mode, followed by a number, sets the current display mode, if it is
currently allowed (see the allow message). mode 1 sets signal output display mode.
mode 2 sets signal input monitor display mode.

min The word min, followed by an optional number, sets the minimum value of
number ~ for signal output. Note that unlike a floating-point number box, the
minimum value of number ~ is not restricted to being an integer value. If the word
min is not followed by a number, any minimum value is removed.



number~ Signal monitor and constant generator

246 MSP Objects

max The word max, followed by an optional number, sets the maximum value of
number ~ for signal output. Note that unlike a floating-point number box, the
maximum value of number ~ is not restricted to being an integer value. If the word
max is not followed by a number, any maximum value is removed.

interval The word interval, followed by a number, sets the sampling interval in milliseconds.
This controls the rate at which the display is updated when number ~ is input
monitor display mode, as well as the rate that numbers are sent out the object’s right
outlet.

flags The word flags, followed by a number, sets characteristics of the appearance and
behavior of number ~. The characteristics (which are described under Arguments.
below) are set by adding together values that designate the desired options, as
follows: 4=Bold type, 64=Send on mouse-up only, 128=Can’t change with
mouse. For example, flags 196 would set all of these options.

Arguments

You can set minimum and maximum limits on the output signal value by selecting
number ~ in an unlocked Pather and choosing Get Info… from the Max menu.
When the patch is loaded, the signal value of number ~ is its last stored value. This is
different from the number box , where the initial value is 0 or the minimum if
defined. A newly created number ~ has no minimum or maximum signal output
value.

Other display options available in the Get Info dialog box are: Draw in Bold (to
display in bold typeface), Send on Mouse Up (to change the signal output value
only when the mouse is released when dragging on number ~), and Can’t Change
(to disallow changes with the mouse).

The allowable display modes can be set by checking or unchecking Signal Monitor
Mode and Signal Input Mode. At least one mode must be checked.

The font and size of a selected number ~ can be changed with the Font menu.

Output

signal Out left outlet: When audio is on, number ~ sends a constant signal out its left outlet
equal to the number most recently received in the left inlet (or entered by the user).
It sends out this value independent of its signal input, and whether or not it is
currently in Signal Output display mode. If the ramp time most recently received in
the right inlet is set to a non-zero value, the output will interpolate between its
previous value and a newly set value over the specified time.

float Out right outlet: Samples of the input signal are sent out at a rate specified by the
interval message.



Signal monitor and constant generator  number~

MSP Objects 247

Examples

Several uses for the number ~ object

See Also

line ~ Ramp generator
sig ~ Constant signal of a number
snapshot ~ Convert signal values to numbers
Tutorial 22 Analysis: Viewing signal data



pass~ Define subpatch signal output

248 MSP Objects

Input

signal Connect a signal to pass ~ before it is sent out an outlet  of a subpatch. Normally, the
signal is passed directly from input to output. However, when the audio in the
subpatch is disabled using mute ~ or the enable 0 message to pcontrol , pass~ will
send a zero signal out its outlet.

Arguments

None.

Output

signal When the audio in a subpatch containing pass ~ is enabled, the output is the same as
the input. When the audio is disabled using mute ~ or the enable 0 message to
pcontrol , the output is a zero signal.

Examples

pass ~ ensures that a muted signal is fully silenced

See Also

mute ~ Disable signal processing in a subpatch
Tutorial 5 Fundamentals: Turning audio signals on and off



Read and write sample values peek~

MSP Objects 249

The peek~ object will function even when the audio is not turned on. You can use peek~ to
treat buffer ~ as a floating-point version of the Max table  object in non-signal applications.

Input

int In left inlet: A sample index into the associated buffer ~ object’s sample memory.
The value stored in the buffer ~ at that index is sent out peek~’s outlet. However, if a
value has just been received in the middle inlet, peek~ stores that value in the
buffer ~ at the specified sample index, rather than sending out a number. If the
number received in the left inlet specifies a sample index that does not exist in the
buffer ~’s currently allocated memory, nothing happens.

In middle inlet: Converted to float.

In right inlet: A channel (from 1 to 4) specifying the channel of a multi-channel
buffer ~ to be used for subsequent reading or writing operations.

float In left inlet: Converted to int.

In middle inlet: A sample value to be stored in the associated buffer ~ . The next
sample index received in the left inlet causes the sample value to be stored at the
index.

In right inlet: Converted to int.

list In left inlet: The second number is stored in the associated buffer ~ at the sample
index specified by the first number. If a third number is present in the list, it sets the
channel of a multi-channel buffer ~ in which the value will be stored. Otherwise, the
most recently set channel is used.

Note that for int, float, and list, if the message refers to a sample index that does not
exist in the buffer ~’s sample memory, nothing happens. You can ensure that
memory is allocated to the buffer ~ by reading an existing file into it, by typing in a
duration argument, or by setting its memory allocation with the size message.

set In left inlet: The word set, followed by the name of a buffer ~ object, associates
peek~ with that newly named buffer ~ object.

(mouse) Double-clicking on peek~ opens an editing window where you can view the
contents of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ object whose sample memory is used by peek~ for
reading and writing.



peek~ Read and write sample values

250 MSP Objects

int Optional. Following the buffer ~ name, you can type in a number to specify the
channel in a multi-channel buffer ~ to use for subsequent reading or writing
operations. The default is 1.

Output

float The sample value in a buffer ~, located at the table index specified by a float or int
received in the left inlet, is sent out peek~’s outlet.

Examples

Peek at samples in a buffer ~, and/or set the value of the samples

See Also

buffer ~ Store a sound sample
poke ~ Write sample values by index
table Store and graphically edit an array of numbers



Sawtooth wave generator phasor~

MSP Objects 251

Input

signal In left inlet: Sets the frequency of the sawtooth waveform.

int or float In left inlet: Sets the frequency of the sawtooth waveform. If a signal is connected to
this inlet, ints and floats are ignored.

In right inlet: Sets the phase of the waveform (from 0 to 1). The signal output
continues from this value.

Arguments

int or float Optional. Sets the initial frequency of the waveform. If a signal is connected to the
left inlet, the argument is ignored.

Output

signal Sawtooth waveform that increases from 0 to 1 repeatedly at the specified frequency.

Examples

A repeating ramp is useful both at audio and at sub-audio frequencies

See Also

cycle ~ Table lookup oscillator
line ~ Ramp generator
wave~ Variable-size table lookup oscillator
Tutorial 3 Analysis: Wavetable oscillator



play~ Position-based sample playback

252 MSP Objects

Input

signal In left inlet: The position (in milliseconds) into the sample memory of a buffer ~
object from which to play. If the signal is increasing over time, play ~ will play the
sample forward. If it is decreasing, play ~ will play the sample backward. If it remains
the same, play ~ outputs the same sample repeatedly, which is equivalent to a DC
offset of the sample value.

set The word set, followed by the name of a buffer ~ object, uses that buffer ~ for
playback.

Arguments

symbol Obligatory. Names the buffer ~ object whose sample memory is used by play ~ for
playback.

int Optional, after the name argument. Specifies the number of output channels: 1, 2,
or 4. The default number of channels is one. If the buffer ~ being played has fewer
channels than the number of play ~ output channels, the extra channels output a
zero signal. If the buffer ~ has more channels, channels are mixed.

Output

signal Sample output read from a buffer ~. If play ~ has two or four output channels, the
left outlet’s signal contains the left channel of the sample, and the other outlets’
signals contain the additional channels.

Examples

play ~ is usually driven by a ramp signal from line ~, but other signals create novel effects

See Also
buffer ~ Store a sound sample
groove ~ Variable-rate looping sample playback
record ~ Record a sample
Tutorial 13 Sampling: Recording and playback



Write sample values by index poke~

MSP Objects 253

Input

signal In left inlet: Signal values you want to write into a buffer ~.

In middle inlet: The sample index where values from the signal in the left inlet will be
written. If the signal coming into the middle inlet has a value of -1, no samples are
written.

float Like the peek~ object, poke ~ can write float values into a buffer ~. Note, however,
that the left two inlets are reversed on the poke ~ object compared to the peek~
object.

In left inlet: Sets the value to be written into the buffer ~ athe specified sample index.
If the sample index is not -1, the value is written.

In middle inlet: Converted to int.

In right inlet: Converted to int.

int In left inlet: Converted to float.

In middle inlet: Sets the sample index for writing subsequent sample values coming
in the left inlet. If there is a signal connected to this inlet, a float is ignored.

In right inlet: Sets the channel of the buffer ~ where sample values are written. The
first (left) channel is specified as 1.

list In left inlet: A list of two or more values will write the first value at the sample index
specified by the second value. If a third value is present, it specifies the audio
channel within the buffer ~ for writing the sample value.

set The word set, followed by the name of a buffer ~, changes the buffer ~ where poke ~
will write its incoming samples.

(mouse) Double-clicking on poke ~ opens an editing window where you can view the
contents of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ where poke ~ will write its incoming samples.

int Optional. Sets the channel number of a multichannel buffer ~ where the samples will
be written. The default channel is 1.

Output

None.



poke~ Write sample values by index

254 MSP Objects

Examples

Write into a buffer ~ using either signals or numbers

See Also

buffer ~ Store a sound sample
peek~ Read and write sample values



Signal power function pow~

MSP Objects 255

Input

pow ~ raises the base value (set in the right inlet) to the power of the exponent (set in
the left inlet). Either inlet can receive a signal, float or int.

signal In left inlet: Sets the exponent.

In right inlet: Sets the base value.

float or int In left inlet: Sets the exponent. If there is a signal connected to the left inlet, a
number received in the left inlet is ignored.

In right inlet: Sets the base value. If there is a signal connected to the right inlet, a
number received in the right inlet is ignored.

Arguments

float or int Optional. Sets the base value. The default value is 0. If a signal is connected to the
right inlet, the argument is ignored.

Output

signal The base value (from the right inlet) raised to the exponent (from the left inlet).

Examples

Computes the mathematical expression x
y
 for converting to logarithmic or exponential scale

See Also

log ~ Logarithm of a signal
curve ~ Exponential ramp generator



rand~ Band-limited random signal

256 MSP Objects

Input

signal The frequency at which a new random number between -1 and 1 is generated. rand ~
interpolates linearly between random values chosen at the specified rate.

float or int Same as signal. If there is a signal connected to the inlet, a float or int is ignored.

Arguments

float or int Optional. Sets the initial frequency. The default value is 0. If a signal is connected to
the inlet, the argument is ignored.

Output

signal A signal consisting of line segments between random values in the range -1 to 1. The
random values occur at the frequency specified by the input.

Examples

Use rand ~ to create roughly band-limited noise, or as a control signal to create random variation

See Also

noise ~ White noise generator



Receive signals without patch cords receive~

MSP Objects 257

Input

signal The receive ~ object receives signals from all send ~ objects that share its name. It
adds them together and sends the sum out its outlet. If no send ~ objects share the
current name, the output of receive ~ is 0. The send ~ objects need not be in the
same patch as the corresponding receive ~.

set The word set, followed by a symbol, changes the name of the receive ~ so that it
connects to different send ~ objects that have the symbol as a name. If no send ~
objects exist with the name, the output of receive ~ is 0.

Arguments

symbol Obligatory. Sets the name of the receive ~ object.

Output

signal The combination of all signals coming into all send ~ objects with the same name as
the receive ~.

Examples

Signals can be received from any loaded Patcher, without patch cords

See Also

send ~ Transmit signals without patch cords
Tutorial 4 Fundamentals: Routing signals



record~ Record sound into a buffer

258 MSP Objects

Input

signal In left inlet: When recording is turned on, the signal is recorded into the sample
memory of a buffer ~ at the current sampling rate.

In middle inlets: If record ~ has more than one input channel, these inlets record the
additional channels into the buffer ~.

int In left inlet: Any non-zero number starts recording; 0 stops recording. Recording
starts at the start point (see below) unless append mode is on.

int or float In the inlet to the left of the right inlet: Set the start point within the buffer ~ (in
milliseconds) for the recording. By default, the start point is 0 (the beginning of the
buffer ~).

In right inlet: Sets the end point of the recording. By default, the end point is the end
of the buffer ~’s allocated memory.

append The word append, followed by a non-zero number, enables append mode. In this
mode, when recording is turned on, it continues from where it was last stopped.
append 0 disables append mode. In this case, recording always starts at the start
point when it is turned on. Append mode is off initially by default.

loop The word loop, followed by a non-zero number, enables loop recording mode. In
loop mode, when recording reaches the end point of the recording (see above) it
continues at the start point. loop 0 disables loop recording mode. In this case,
recording stops when it reaches the end point. Loop mode is off initially by default.

set The word set, followed by the name of a buffer ~, changes the buffer ~ where
record ~ will write the recorded samples.

(mouse) Double-clicking on record ~ opens an editing window where you can view the
contents of its associated buffer ~ object.

Arguments

symbol Obligatory. Names the buffer ~ where record ~ will write the recorded samples.

int Optional, following the buffer ~ name argument. Specifies the number of input
channels (1, 2, or 4). This determines the number of inlets record ~ has. The two
rightmost inlets always set the record start and end points.

Output

signal Sync output. During recording, this outlet outputs a signal that goes from 0 when
recording at the start point to  1 when recording reaches the end point. When not
recording, a zero signal is output.



Record sound into a buffer record~

MSP Objects 259

Examples

Store a signal excerpt for future use

See Also

buffer ~ Store a sound sample
groove ~ Variable-rate looping sample playback
play ~ Position-based sample playback
Tutorial 13 Sampling: Recording and playback



reson~ Resonant bandpass filter

260 MSP Objects

Input

signal In left inlet: Any signal to be filtered.

In left-middle inlet: Sets the bandpass filter gain. This value should generally be less
than 1.

In right-middle inlet: Sets the bandpass filter center frequency in hertz.

In right inlet: Sets the bandpass filter “Q”—roughly, the sharpness of the filter—
where Q is defined as the filter bandwidth divided by the center frequency. Useful Q
values are typically between 0.01 and 500.

int or float An int or float can be sent in the three right inlets to change the filter gain, center
frequency, and Q. If a signal is connected one of the inlets, a number received in that
inlet is ignored.

list The first number sets the filter gain. The second number sets the filter center
frequency. The third number sets the filter Q. If any of the inlets corresponding to
these parameters have signals connected, the corresponding value in the list  is
ignored.

clear Clears the filter’s memory. Since reson ~ is a recursive filter, this message may be
necessary to recover from blowups.

Arguments

int or float Optional. Numbers set the initial gain, center frequency, and Q. The default values
are 0 for gain, 0 for center frequency, and 0.01 for Q.

Output

signal The filtered input signal. The equation of the filter is
yn = gain * (xn - r * xn-2) + c1 * yn-1 + c2 * yn-2

where r, c1, and c2 are parameters calculated from the center frequency and Q.

Examples

Control gain, center frequency, and Q of a bandpass filter to alter a rich signal



Resonant bandpass filter reson~

MSP Objects 261

See Also

biquad ~ Two-pole, two-zero filter
comb ~ Comb filter



sah~ Sample and hold

262 MSP Objects

Input

signal In left inlet: A signal to be sampled. When the control signal (in the right inlet) goes
from being at or below the current trigger value to being above the trigger value, the
signal in the left inlet is sampled and its value is sent out as a constant signal value.

In right inlet: The control signal. In order to cause a change in the output of sah~,
the control signal must go from being at or below the trigger value to above the
trigger value. When this transition occurs the signal in the left inlet is sampled and
becomes the new output signal value.

int or float In left inlet: Sets the trigger value.

Arguments

int or float Optional. Sets the initial trigger value. The default is 0.

Output

signal When the control signal received in the right inlet goes from being at or below the
trigger value to being above the trigger value, the output signal changes to the
current value of the signal received in the left inlet. This signal value is sent out until
the next time the trigger value is exceeded by the control signal.

Examples

Hold the signal value constant until the next trigger

See Also

phasor ~ Sawtooth wave generator



Convert samples to milliseconds sampstoms~

MSP Objects 263

Input

float or int A value representing a number of samples received in the inlet is converted to
milliseconds at the current sampling rate and sent out the object’s right outlet. The
input may contain a fractional number of samples. For example, at 44.1 kHz
sampling rate, 322.45 samples is 7.31 milliseconds. (A float or int input triggers
output even when audio is off.)

signal Values in the signal represent a number of samples, and are converted to
milliseconds at the current sampling rate and output as a signal out the left outlet.
The input may contain a fractional number of samples.

Arguments

None.

Output

signal Out left outlet: A signal consisting of the number of milliseconds corresponding to
values representing a number of samples in the input signal.

float Out right outlet: A number of milliseconds corresponding to a number of samples
received in the inlet.

Examples

Some objects refer to time in samples, some in milliseconds

See Also

dspstate ~ Report current DSP settings
mstosamps ~ Convert milliseconds to samples



scope~ Signal oscilloscope

264 MSP Objects

Input

signal In left inlet: The input signal is displayed on the X axis of the oscilloscope.

In right inlet: The input signal is displayed on the Y axis of the oscilloscope.

If signals are connected to both the left and right inlets, scope ~ operates in X-Y
mode, plotting points whose horizontal position corresponds to the value of the
signal coming into the left (X) inlet and whose vertical position corresponds to the
value of the signal coming into the right (Y) inlet. If the two signals are identical and
in phase, a straight line increasing from left to right will be seen. If the two signals are
identical and 180 degrees out of phase, a straight line decreasing from left to right
will be seen. Other combinations may produce circles, ellipses, and Lissajous
figures.

int In left inlet: Sets the number of samples collected for each value in the display buffer.
Smaller numbers expand the image but make it scroll by on the screen faster. The
minimum value is 2, the maximum is 8092, and the default initial value is 256. In X
or Y mode, the most maximum or minimum value seen within this period is used.
In X-Y mode, a representative sample from this period is used.

In right inlet: Sets the size of the display buffer. This controls the rate at which
scope ~ redisplays new information as well as the scaling of that information. If the
buffer size is larger, the signal image will stay on the screen longer and be visually
compressed. If the buffer size is smaller, the signal image will stay on the screen a
shorter time before it is refreshed and will be visually expanded.

It might appear that the samples per display buffer element and the display buffer
size controls do the same thing but they have subtly different effects. You may need
to experiment with both controls to find the optimum display parameters for your
application.

range The word range, followed by two numbers (float or int) sets the minimum and
maximum displayed signal amplitudes. The default values are -1 to 1.

delay The word delay, followed by a number, sets the number of milliseconds of delay
before scope ~ begins collecting values. After a non-zero delay period, scope ~
enters a state in which it may wait for a trigger condition to be satisfied in the input
signal based on the setting of the trigger state (set with the trigger message) and
trigger level (set with the triglevel message). By default, the delay is 0.

trigger Sets the trigger mode. After a non-zero delay period (set with the delay message),
scope ~ begins to wait for a particular feature in the input signal before it begins
collecting samples. trigger 1 sets an upward trigger in which the signal must go from
being below the trigger level (default 0) to being equal to it or above it. trigger 2 sets a
downward trigger in which the signal must go from being above the trigger level to
being equal to it or below it. The default trigger mode is 0, which does not wait after



Signal oscilloscope  scope~

MSP Objects 265

a non-zero delay period before collecting samples again. This is sometimes referred
to as a “line” trigger mode.

triglevel The word triglevel, followed by a number, sets the trigger level, used by trigger
modes 1 and 2. The default trigger level is 0. If you are displaying a waveform,
making slight changes to the trigger level will move the waveform to the left or right
inside the scope ~. It is possible to set the trigger level so that scope ~ will never
change the display.

(mouse) When you click on a scope ~, its display freezes for as long as you hold the mouse
button down.

Arguments

None.

Output

None.

Examples

Display a signal, or plot two signals in X-Y mode

See Also

meter ~ Visual peak level indicator
Tutorial 23 Analysis: Oscilloscope



selector~ Assign one of several inputs to an outlet

266 MSP Objects

Input

int or float In left inlet: If a signal is not connected to the left inlet, an int or float determines
which input signal in the other inlets will be passed through to the outlet. If the value
is 0 or negative, all inputs are shut off and a zero signal is sent out. If it is 1 but less
than 2, the signal coming in the first inlet to the right of the leftmost inlet is passed to
the outlet. If the number is 2 but less than 3, the signal coming into the next inlet to
the right is used, and so on.

signal In left inlet: If a signal is connected to the left inlet, selector ~ operates in a mode that
uses signal values to determine which of its input signals is to be passed to its outlet.
If the signal coming in the left inlet is 0 or negative, the output is shut off and a zero
signal is sent out. If it is 1 but less than 2, the signal coming in the first inlet to the
right of the leftmost inlet is passed to the outlet. If the signal is 2 but less than 3, the
signal coming into the next inlet to the right is used, and so on.

In other inlets: Any signal, to be passed through to the selector ~ object’s outlet
depending on the value of the most recently received int or float in the left inlet, or
the signal coming into the left inlet. The first signal inlet to the right of the leftmost
inlet is considered input 1, the next to the right input 2, and so on.

If the signal network connected to one or more of the selector ~ signal inlets
contains a begin ~ object, and a signal is not connected to the left inlet of the
selector ~, all processing between the begin ~ outlet and the selector ~ inlet is turned
off when the input signal is not being passed to the selector ~ outlet.

Arguments

int Optional. The first argument specifies the number of input signals. The default is 1.
The second argument specifies which signal inlet is initially open for its input to be
passed through to the outlet. The default is 0, where all signals are shut off and a zero
signal is sent out. If a signal is connected to the left inlet, the second argument is
ignored.

Output

signal The output is the signal coming in the “open” inlet, as specified by a number or
signal in the left inlet. The output is a zero signal if all signal inlets are shut off.



Assign one of several inputs to an outlet selector~

MSP Objects 267

Examples

Allow only one of several signals to pass; optionally turn off unneeded signal objects

See Also

gate ~ Route a signal to one of several outlets
begin ~ Define a switchable part of a signal network
Tutorial 5 Fundamentals: Turning signals on & off



send~ Transmit signals without patch cords

268 MSP Objects

Input

signal The send ~ object sends its input signal to all receive ~ objects that share its name.
The send ~ object need not be in the same patch as the corresponding receive ~
object(s).

set The word set, followed by a symbol, changes the name of the send ~ so that it
connects to different receive ~ objects that have the symbol as a name. (If no
receive ~ objects with the same name exist, send ~ does nothing.)

Arguments

symbol Obligatory. Sets the name of the send ~ object.

Output

None.

Examples

Signal coming into send ~ comes out any receive ~ object with the same name

See Also

receive ~ Receive signals without patch cords
Tutorial 4 Fundamentals: Routing signals



Report sound file information sfinfo~

MSP Objects 269

Input

open The word open, followed by a name of an AIFF or Sound Designer II file, opens the
file if it exists in Max’s search path. Without a filename, open  brings up a standard
open file dialog allowing you to choose a file. After the file is opened, sfinfo ~
interrogates the file and reports the number of channels, sample size, sample rate,
and length in milliseconds out its outlets.

bang If a file has already been opened, either with the open  message or specified by an
argument to sfinfo ~, bang reports the number of  channels, sample size, sample rate,
and length in milliseconds out the sfinfo ~ object’s outlets.

Arguments

symbol Optional. Names a file that sfinfo ~ will report about when it receives a subsequent
bang message. The file must exist in the Max search path.

 Output

int Out left outlet: The number of channels in the sound file.

Out 2nd outlet: The sound file’s sample size in bits (typically 16).

float Out 3rd outlet: The sound file’s sampling rate.

Out right outlet: The duration of the sound file in milliseconds.

Examples

Report information about a specific sound file

See Also

info ~ Report information about a sample
sflist ~ Store sound file cues
sfplay ~ Play sound file from disk



sflist~ Store sound file cues

270 MSP Objects

Input

open The word open, followed by a name of an AIFF or Sound Designer II file, opens the
file if it exists in Max’s search path. Without a filename, open  brings up a standard
open file dialog allowing you to choose a file. When a file is opened, its beginning is
read into memory, and until another file is opened, playing from the beginning the
file is defined as cue 1. Subsequent cues can be defined referring to this file using the
preload message without a filename argument. When the open message is received,
the previous current file, if any, remains open and can be referred to by name when
defining a cue with the preload message. If any cues were defined that used the
previous current file, they are still valid even if the file is no longer current.

preload Defines a cue—an integer greater than or equal to 2—to refer to a specific region of
a file. When that cue number is subsequently received by an sfplay ~ object that is set
to use cues from the sflist ~ object, the specified region of the file is played by
sfplay ~. Cue number 1 is always the beginning of the current file—the file last
opened with the open message.—and cannot be modified with the preload message.

There are a number of forms for the preload message. The word preload is followed
by an obligatory cue number between 2 and 32767. If the cue number is followed by
a filename—a file that is currently open or one that is in Max’s search path—that
cue number will henceforth play the specified file . Note that a file need not have
been explicitly opened with the open message in order to be used in a cue. If no
filename is specified, the currently open file is used.

After the optional filename, an optional start time in milliseconds can be specified. If
no start time is specified, the beginning of the file is used as the cue start point. After
the start time, an end time in milliseconds can be specified. If no end time is
specified, or the end time is 0, the cue will play to the end of the file. If the end time is
less than the start time, the cue is defined but will not play. Eventually it may be
possible to define cues that play in reverse.

Each cue that is defined requires 128K of memory per audio file channel at the
default buffer size. This is the preloaded data for the start of the cue.

print Prints a list of all the currently defined cues.

clear The word clearwith no arguments clears all defined cues. After a clearmessage is
received, only the number 1 will play anything (assuming there’s an open file). The
word clearfollowed by one or more cue numbers removes them from the sflist ~
object’s cue list.

fclose The word fclose, followed by the name of an open file, closes the file and removes all
cues associated with it. The word fclose by itself closes the current file.

embed The message embed, followed by any non-zero integer, causes sflist ~ to save all of
its defined cues and the name of the current open file when the Patcher file is saved.



Store sound file cues sflist~

MSP Objects 271

The message embed 0 keeps sflist ~ from saving this information when the Patcher is
saved. By default, the current file name and the cue information is not saved in
sflist ~ when the Patcher is saved. If an sflist ~ object is saved with stored cues, they
will all be preloaded when the Patcher containing the object is loaded.

Arguments

symbol Obligatory. Names the sflist ~. sfplay ~ objects use this name to refer to cues stored
inside the object.

int Optional. Sets the buffer size used to preload sound files. The default and minimum
is 16384. Preloaded buffers are 4 times the buffer size per channel of the sound file.

Output

None.

Examples

Store a global list of cues that can be used by one or more sfplay ~ objects.

See Also

buffer ~ Store a sound sample
groove ~ Variable-rate looping sample playback
play ~ Position-based sample playback
sfinfo ~ Report sound file information
sfplay ~ Play sound file from disk
sfrecord ~ Record to sound file on disk
Tutorial 16 Sampling: Record and play sound files



sfplay~ Play sound file from disk

272 MSP Objects

Input

open Opens an AIFF or Sound Designer II file for playback and makes it the current file.
The word open, followed by a filename, opens the file if it exists in Max’s search
path. Without a filename, open brings up a standard open file dialog allowing you to
choose a file. When a file is opened, its beginning is read into memory, and until
another file is opened, you can play the file from the beginning by sending sfplay ~
the message 1. When the open  message is received, the previous current file, if any,
remains open and can be referred to by name when defining a cue with the preload
message. If any cues were defined that used the previous current file, they are still
valid even if the file is no longer current.

int If a file has been opened with the open message, 1 begins playback (of the most
recently opened file), and 0 stops playback. Numbers greater than 1 trigger cues that
have been defined with the preload  message, or that were defined based on the saved
state of the sfplay ~ object. When the file is played, the audio data in the file is sent
out the signal outlets according to the number of channels the object has. When the
cue is completed or sfplay ~ is stopped with a 0, a bang is sent out the right outlet.

If the object is currently assigned to an sflist ~ object (using the set message or with a
typed-in argument), an int will trigger cues stored in the sflist ~ object rather than
inside the sfplay ~. To reset sfplay ~ to use its own cues, send it the set message with
no arguments.

set The message set, followed by a name of an sflist ~ object, will cause sfplay ~ to play
cues stored in the sflist ~ when it receives an int or list. The message set  with no
arguments resets sfplay ~ to use its own internally defined cues when receiving an int
or list.

list Gives a set of cues for sfplay ~ to play, one after the other. The maximum number of
cues is in a list is 128. If a cue number in a list has not been defined, it is skipped and
the next cue, if any, is tried. If the object is currently assigned to an sflist ~ object, a
list uses cues stored in the sflist ~ object. Otherwise, cues stored inside the sfplay ~
object are used.

anything If the name of an sflist ~ object is sent to sfplay ~, followed by a number, the
numbered cue from the sflist ~ is played if it exists.

pause Pauses soundfile playback. You can continue playback at the paused point with the
resume message, or at a different location if you send a cue number or the seek
message.

resume If playback was paused, playback resumes from the paused point in the file.

preload Defines a cue—an integer greater than or equal to 2—to refer to a specific region of
a file. When that cue number is subsequently received, sfplay ~ plays that region of



Play sound file from disk sfplay~

MSP Objects 273

that file. Cue number 1 is always the beginning of the current file—the file last
opened with the open message.—and cannot be modified with the preload message.

There are a number of forms for the preload message. The word preload is followed
by an obligatory cue number between 2 and 32767. If the cue number is followed by
a filename—a file that is currently open or one that is in Max’s search path—that
cue number will henceforth play the specified file . Note that a file need not have
been explicitly opened with the open message in order to be used in a cue. If no
filename is specified, the currently open file is used.

After the optional filename, an optional start time in milliseconds can be specified. If
no start time is specified, the beginning of the file is used as the cue start point. After
the start time, an end time in milliseconds can be specified. If no end time is
specified, or the end time is 0, the cue will play to the end of the file. If the end time is
less than the start time, the cue is defined but will not play. Eventually it may be
possible to define cues that play in reverse.

Each cue that is defined requires 128K of memory per sound file channel at the
default buffer size. This is the preloaded data for the start of the cue.

print Prints information about the state of the object, plus a list of all the currently defined
cues.

clear The word clearwith no arguments clears all defined cues. After a clearmessage is
received, only the number 1 will play anything (assuming there’s an open file). The
word clearfollowed by one or more cue numbers removes them from the sfplay ~
object’s cue list.

fclose The word fclose, followed by the name of an open file, closes the file and removes all
cues associated with it. The word fclose by itself closes the current file.

seek The word seek, followed by a start time in milliseconds, moves to the specified
position in the current file and begins playing. After the start time, an optional end
time can be specified, which will set a point for playback to stop. The seek message
is intended to allow you to preview and adjust the start and end points of a cue.

embed The message embed, followed by any non-zero integer, causes sfplay ~ to save all of
its defined cues and the name of the current open file when the Patcher file is saved.
The message embed 0 keeps sfplay ~ from saving this information when the Patcher
is saved. By default, the current file name and the cue information is not saved in
sfplay ~ when the Patcher is saved. If an sfplay ~ object is saved with stored cues,
they will all be preloaded when the Patcher containing the object is loaded.



sfplay~ Play sound file from disk

274 MSP Objects

Arguments

symbol Optional. If the first argument is a symbol, it names an sflist ~ that the sfplay ~ object
will use for playing cues. If no symbol argument is given, sfplay ~ plays its own
internally defined cues.

int Optional. Sets the number of output channels, which determines the number of
outlets that the sfplay ~ object will have. The maximum number of channels is 8.
The default is 1. If the sound file being played has more output channels than the
sfplay ~ object, higher-numbered channels will not be played. If the sound file has
fewer channels, the signals coming from the extra outlets of sfplay ~ will be 0.

Output

signal Each outlet except the right outlet sends out the audio data of the corresponding
channel of the sound file when a cue number is received in the inlet. (The left outlet
plays channel 1, and so on.)

bang Out right outlet: When the file is done playing, or when playback is stopped with a 0
message, a bang is sent out.

Examples

Sound files can be played from the hard disk, without loading the whole file into memory

See Also

buffer ~ Store a sound sample
groove ~ Variable-rate looping sample playback
play ~ Position-based sample playback
sfinfo ~ Report sound file information
sflist ~ Store sound file cues
sfrecord ~ Record to sound file on disk
Tutorial 16 Sampling: Record and play sound files



Record to sound file on disk sfrecord~

MSP Objects 275

Input

open In left inlet: Opens an AIFF file for recording. The word open, followed by a symbol
filename, creates (or opens, if it already exists) the specified file in the current default
volume. Without a symbol, open brings up a standard save file dialog allowing you
to name a file for recording. An existing file with the same name will be overwritten.

opensd2 Opens a Sound Designer II file for recording. The word opensd2, followed by a
symbol filename, creates (or opens, if it already exists) the specified file in the current
default volume. Without a symbol, opensd2 brings up a standard save file dialog
allowing you to name a file for recording. An existing file with the same name will be
overwritten.

int In left inlet: If a file has been opened with the open or opensd2  message, a non-zero
value begins recording, and 0 stops recording and closes the file. sfrecord ~ requires
another open or opensd2  message to record again if a 0 has been sent.

Recording may also stop spontaneously if there is an error, such as running out of
space on your hard disk.

signal Each inlet of sfrecord ~ accepts a signal which is recorded to a channel of a sound file
when recording is turned on.

print Outputs cryptic status information about the progress of the recording.

record In left inlet: If a file has been opened with the open or opensd2  message, the word
record, followed by a time in milliseconds, begins recording for the specified
amount of time. The recording can be stopped before it reaches the end by sending
sfrecord ~ a 0 in its left init.

Arguments

int Optional. Sets the number of input channels, which determines the number of inlets
that the sfrecord ~ object will have. The maximum number of channels is 8, and the
default is 1. The AIFF or Sound Designer II file created will have the same number of
channels as this argument. Whether you can actually record the maximum number
of channels is dependent on the speed of your processor and hard disk.

Examples

Save a sound file containing “real world” sound and/or sound created in MSP



sfrecord~ Record to sound file on disk

276 MSP Objects

See Also

sfplay ~ Play sound file from disk
Tutorial 16  Sampling: Record and play sound files



Constant signal of a number sig~

MSP Objects 277

Input

int or float The number is sent out as a constant signal.

signal Any signal input is ignored. You can connect a begin ~ object to the sig ~ inlet to
define the beginning of a switchable signal network.

Arguments

int or float Optional. Sets an initial signal output value.

Output

signal sig ~ outputs a constant signal consisting of the value of its argument or the most
recently received int or float in its inlet.

Examples

Provide constant numerical values to a signal network with sig ~

See Also

+~ Add signals
begin ~ Define a switchable part of a signal network
line ~ Ramp generator
Tutorial 4 Fundamentals: Routing signals



snapshot~ Convert signal values to numbers

278 MSP Objects

Input

signal In left inlet: The signal whose values will be sampled and sent out the outlet.

int or float In left inlet: Any non-zero number turns on the object’s internal clock, 0 turns it off.
The internal clock is on initially by default, if a positive clock interval has been
provided.

In right inlet: Sets the interval in milliseconds for the internal clock that triggers the
automatic output of values from the input signal. If the interval is 0, the clock stops.
If it is a positive integer, the interval changes the rate of data output.

bang Sends out a report of the current signal value.

offset The word offset, followed by a number, sets the number of the sample within a
signal vector that will be reported when snapshot ~ sends its output. The number is
constrained between 0 (the default) and the current signal vector size minus one.

Arguments

int Optional. The first argument sets the internal clock interval. If it is 0, the internal
clock is not used, so snapshot ~ will only output data when it receives a bang
message. By default, the interval is 0. The second argument sets the sample number
within a signal vector that is reported.

Output

float When snapshot ~ receives a bang, or its internal clock is on, sample values from the
input signal are sent out its outlet.

Examples

See a sample of a signal at a given moment

See Also

capture ~ Store a signal to view as text
sig ~ Constant signal of a number
Tutorial 22 Analysis: Viewing signal data



Square root of a signal sqrt~

MSP Objects 279

Input

signal sqrt ~ outputs a signal that is the square root of the input signal. A negative input has
no real solution, so it causes an output of 0.

Arguments

None.

Output

signal The square root of the input signal.

Examples

Output signal is the square root of the input signal

See Also

curve ~ Exponential ramp generator
log ~ Logarithm of a signal
pow ~ Signal power function



tapin~ Input to a delay line

280 MSP Objects

Input

signal The signal is written into a delay line that can be read by the tapout ~ object.

clear Clears the memory of the delay line., which may produce a click in the output.

Arguments

float or int Optional. The maximum delay time in milliseconds. This determines the size of the
delay line memory. If the sampling rate is increased after the object has been created,
tapin ~ will attempt to resize the delay line. If no argument is present, the default
maximum delay time is 100 milliseconds.

Output

tap In order for the delay line to function, the outlet of tapin ~ must be connected to the
left inlet of tapout ~. It cannot be connected to any other object.

Examples

tapin ~ creates a delay buffer from which to tap delayed signal

See Also

delay ~ Delay line specified in samples
tapout ~ Output from a delay line
Tutorial 25 Processing: Delay lines



Output from a delay line tapout~

MSP Objects 281

Input

tap In left inlet: The outlet of a tapin ~ object must be connected to the left inlet of
tapout ~ in order for the delay line to function.

The tapout ~ object has one or more inlets and one or more outlets. A delay time
signal or number received in an inlet affects the output signal coming out of the
outlet directly below the inlet.

signal If a signal is connected to an inlet of tapout ~, the signal coming out of the outlet
below it will use a continuous delay algorithm. Incoming signal values represent the
delay time in milliseconds. If the signal increases slowly enough, the pitch of the
output will decrease, while if the signal decreases slowly, the pitch of the output will
increase. The continuous delay algorithm is more computationally expensive than
the fixed delay algorithm that is used when a signal is not connected to a tapout ~
inlet.

float or int If a signal is not connected to an inlet of tapout ~, a fixed delay algorithm is used, and
a float or int received in the inlet sets the delay time of the signal coming out of the
corresponding outlet. This may cause clicks to appear in the output when the delay
time is changed. However, fixed delay is suitable for many applications such as
reverberation where delay times do not change dynamically, and it is
computationally less expensive than the continuous delay algorithm.

list In left inlet: Allows several fixed delay times to be changed at the same time. The first
number in the list sets the delay time for the first outlet, and so on. If any inlets
corresponding to list values have signals connected to them, the values are skipped.

Arguments

float or int Optional. One or more initial delay times in milliseconds, one for each delay “tap”
inlet-outlet pair desired. For example, the arguments 50 100 300 would create a
tapout ~ object with three independent “taps” corresponding to three inlets and
three outlets. If a signal is connected to an inlet, the initial delay time corresponding
to that inlet-outlet pair is ignored.

Output

signal Each outlet of tapout ~ corresponds to an individually controlled “tap” of a delay
line written by the tapin ~ object. The output signal coming out of a tapout ~ outlet is
the input to tapin ~ delayed by the number of milliseconds specified by the
numerical or signal control received in the inlet directly above the outlet.



tapout~ Output from a delay line

282 MSP Objects

Examples

tapout ~ sends out the signal tapin ~ receives, delayed by some amount of time

See Also

delay ~ Delay line specified in samples
tapin ~ Input to a delay line
Tutorial 25 Processing: Delay lines



Detect signal above a set level thresh~

MSP Objects 283

Input

signal In left inlet: A signal whose level you want to detect.

float In middle inlet: Sets the lower (“reset”) threshold level for the input signal. When a
sample in the input signal is greater than or equal to the upper (“set”) level, thresh ~
sends out a signal of 1 until a sample in the input signal is less than or equal to this
reset level.

In right inlet: Sets the upper (“set”) threshold level for the input signal. When the
input is equal to or greater than this value, thresh ~ sends out a signal of 1.

Arguments

float The first argument specifies the reset or low threshold level. If no argument is
present, the reset level is 0. The second argument specifies the set or high threshold
level. If no argument is present, the set level is 0.

If only one argument is present, it specifies the reset level, and the set level is 0.

Output

signal When a sample in the input signal is greater than or equal to the upper threshold
level, the output is 1. The output continues to be 1 until a sample in the input signal
is equal to or less than the reset level. If the set level and the reset level are the same,
the output is 1 until a sample in the input signal is less than the reset level.

Examples

Detect when signal exceeds a certain level

See Also

>~ Is greater than, comparison of two signals
change ~ Report signal direction
edge~ Detect logical signal transitions



train~ Pulse train generator

284 MSP Objects

Input

signal In left inlet: Specifies the period (time interval between pulse cycles), in
milliseconds, of a pulse train sent out the left outlet.

In middle inlet: Controls the pulse width or duty cycle. The signal values represent a
fraction of the pulse interval that will be devoted to the “on” part of the pulse (signal
value of 1). A value of 0 has the smallest “on” pulse size (usually a single sample),
while a value of 1 has the largest (usually the entire interval except a single sample).
A value of .5 makes a pulse with half the time at 1 and half the time at 0.

In right inlet: Sets the phase of the onset of the “on” portion of the pulse. A value of
0 places the “on” portion at the beginning of the interval, while other values (up to
1, which is the same as 0) delay the “on” portion by a fraction of the total inter-pulse
interval.

float or int Numbers can be used instead of signals to control period, pulse width, and phase. If
a signal is also connected to the inlet, floats and ints are ignored.

Arguments

float or int Optional. Initial values for inter-pulse interval in milliseconds (default 1000), pulse
width (default 0.5), and phase (default 0). If signals are connected to any of the
train ~ object’s inlets, the corresponding initial argument value is ignored.

Output

signal Out left outlet: A pulse (square) wave train having the specified interval, width, and
phase.

bang Out right outlet: When the “on” portion of the pulse begins, a bang is sent out the
right outlet. Using this outlet, you can use train ~ as a signal-synchronized
metronome with an interval specifiable as a floating-point (or signal) value.
However, there is an unpredictable delay between the “on” portion of the pulse and
the actual output of the bang message, which depends in part on the current Max
scheduler interval. The delay is guaranteed to be a millisecond or less if the
scheduler interval is set to 1 millisecond.



Pulse train generator train~

MSP Objects 285

Examples

Provide an accurate pulse for rhythmic changes in signal

See Also

<~ Is less than, comparison of two signals
>~ Is greater than, comparison of two signals
clip ~ Limit signal amplitude
phasor ~ Sawtooth (phase) wave generator



vst~ Host a VST plug-in

286 MSP Objects

Input

signal In left inlet: The left channel audio input to the plug-in. If the plug-in has a mono
input, use the vst ~ object’s left inlet.

In right inlet: The right channel audio input to the plug-in.

int In left inlet: Changes the current program of the plug-in. A program is a collection
of settings for all of the plug-in’s parameters. This message will cause them all to
change at once.

list In left inlet: A list consisting of an int followed by a float between 0 and 1 changes the
parameter specified by the first number to the value of the second number.

anything In left inlet: A symbol specifying a parameter name defined by the object (see the
params message) followed by a float between 0 and 1 sets the named parameter to
the specified value.

open In left inlet: Opens the plug-in’s editing window. If the plug-in does not contain its
own editor, a default editing window is displayed. The default window allows the
plug-ins parameters to be edited with horizontal sliders, as well as banks of
programs to be loaded and saved. These functions are typically available in a
different form in plug-in specific editor windows.

read In left inlet: Opens a dialog box for choosing a file containing a bank of programs for
the plug-in. It is possible to open a VST program file that doesn’t contain programs
for a particular plug-in; in this case, the read operation will do nothing.

write In left inlet: Opens a dialog box allowing you to name a file where you want to save
the current set of programs for the plug-in, and writes out a file.

mix In left inlet: The word mix, followed by a 1, turns on mixing of the input with the
plug-in’s output. The word mix, followed by a value of 0, turns off mixing of the
input with the plug-in’s output. By default, input mixing is off, although the mix
argument, if present, will turn it on initially.

set In left inlet: The word set, followed by a symbol, renames the current program to
the name specified by the symbol.

params In left inlet: Outputs a series of symbols containing the names of all the plug-in’s
parameters.

plug In left inlet: The word plug, followed by a symbol filename, looks for a VST plug-in
file by that name. If one is found, the currently loaded plug-in is closed and the one
specified by the filename is opened. If no filename is specified, the plug message will
open a dialog box asking for the name of a VST plug-in to load .

(mouse) Double-clicking on vst ~ opens the plug-in’s editing window.



Host a VST plug-in vst~

MSP Objects 287

Arguments

symbol Obligatory. The name of the VST plug-in file or none  if no file is to be loaded. If the
file cannot be found, the default plug-in is loaded, which acts as a simple stereo gain
control.

Optional. Following the plug-in name, you can specify the name of a VST program
file to load for the plug-in.

Optional. Following the plug-in name or program filename, the word mix turns on
mixing the input with the plug-in’s output.

Output

signal Out left outlet: The left channel of the audio output produced by the plug-in.

Out 2nd outlet: The right channel of the audio output produced by the plug-in.

symbol Out 3rd outlet: When vst ~ receives the params message , it sends out a series of
messages containing the  parameter names of each parameter (starting at the first
parameter, which is number 1) defined by the plug-in. Some plug-ins, especially
those with their own editors, fail to name the parameters. In this case, the output of
the params  message may be relatively useless.

list Out right outlet: When a plug-in parameter is changed, either with a list as input or
by using the plug-in editor window, a list containing the parameter number
followed by the new parameter value is sent out this outlet.

Examples

Process an audio signal with a VST plug-in

See Also

gain ~ Exponential scaling volume slider.



wave~ Variable-size table lookup oscillator

288 MSP Objects

Input

signal In left inlet: Input signal values progressing from 0 to 1 are used to scan a specified
range of samples in a buffer ~ object. The output of a phasor ~ can be used to control
wave~ as an oscillator, treating the range of samples in the buffer ~ as a repeating
waveform. However, note that when changing the frequency of a phasor ~
connected to the left inlet of wave~, the perceived pitch of the signal coming out of
wave~ may not correspond exactly to the frequency of phasor ~ itself if the stored
waveform contains multiple or partial repetitions of a waveform. You can invert the
phasor ~ to play the waveform backwards.

In middle inlet: The start of the waveform as a millisecond offset from the beginning
of a buffer ~ object’s sample memory.

In right inlet: The end of the waveform as a millisecond offset from the beginning of
a buffer ~ object’s sample memory.

float or int In middle or right inlets: Numbers can be used instead of signals to control the start
and end points of the waveform, provided a signal is not connected to the inlet that
receives the number.

set The word set, followed by a symbol, sets the buffer ~ used by wave ~ for its stored
waveform. The symbol can optionally be followed by two values setting new
waveform start and end points. If the values are not present, the default start and
end points (the start and end of the sample) are used. If signals are connected to the
start and/or end point inlets, the start and/or end point values are ignored.

Arguments

symbol Obligatory. Names the buffer ~ object whose sample memory is used by wave~ for
its stored waveform. Note that if the underlying data in a buffer ~ changes, the signal
output of wave~ will change, since it does not copy the sample data in a buffer ~.
wave~ always uses the first channel of a multi-channel buffer ~.

float or int Optional. After the buffer ~ name argument, you can type in values for the start and
end points of the waveform, as millisecond offsets from the beginning of a buffer ~
object’s sample memory. By default the start point is 0 and the end point is the end
of the sample. If you want to set a non-zero start point but retain the sample end as
the waveform end point, use only a single typed-in argument after the buffer ~
name. If a signal is connected to the start point (middle) inlet, the initial waveform
start point argument is ignored. If a signal is connected to the end point (right) inlet,
the initial waveform end point is ignored.

Output

signal The portion of the buffer ~ specified by wave~’s start and end points is scanned by
signal values ranging from 0 to 1 in wave~’s inlet, and the corresponding sample



Variable-size table lookup oscillator wave~

MSP Objects 289

value from the buffer ~ is sent out wave~’s outlet. If the signal received in wave’s
inlet is a repeating signal such as a sawtooth wave from a phasor ~, the resulting
output will be a waveform (excerpted from the buffer ~) repeating at the frequency
corresponding to the repetition of the input signal.

Examples

Loop through part of a sample, treating it as a variable-size wavetable

See Also

buffer ~ Store a sound sample
groove ~ Variable-rate looping sample playback
phasor ~ Sawtooth (phase) wave generator
play ~ Position-based sample playback
Tutorial 15 Sampling: Variable-length wavetable



dsp Messages to the dsp object

290 Messages to dsp

Controlling and automating MSP

In order to provide low-level control over the MSP environment from within Max, a special
object named dsp has been defined. This object is similar to the object max that can accept
messages in Max 3.5 (refer to the Max 3.5 manual for a list of messages understood by the max
object). Sending a message to the dsp object is done by placing a semicolon in a message box,
followed by dsp and then the message and arguments (if any). An example is shown below.

Turn the audio on or off without a dac~ or adc~ object

You need not connect the message box to anything, although you may want to connect
something to the inlet of the message box to supply a message argument or trigger it from a
loadbang to configure MSP signal processing parameters when your patcher file is opened.

Here is a list of messages the dsp object understands:

Message Parameters

; dsp start Start Audio

; dsp stop Stop Audio

; dsp set N N = 1, Start Audio; N = 0, Stop Audio

; dsp status Open DSP Status Window

; dsp open Open DSP Status Window

; dsp sr N N = New Sampling Rate in Hz

; dsp iovs N N = New I/O Vector Size

; dsp sigvs N N = New Signal Vector Size

; dsp debug N N = 1, Debugging on; N = 0, Debugging off

; dsp takeover N N = 1, Scheduler in Audio Interrupt On;
N = 0, Scheduler in Audio Interrupt Off

Certain audio drivers can be controlled with the ; dsp driver message. Refer to the Audio Input
and Output section for more information on drivers that support this capability.



Keyword Index MSP Object Thesaurus

MSP Object Thesaurus 291

Absolute value of all samples in a signal ...............................................................................   abs~
Adding signals together ...........................................................................................................   +~
Additive synthesis ........................................................................................................  +~, cycle ~
AIFF saving and playing .........................................................  buffer ~, info ~, sfplay ~, sfrecord ~
Aliasing ........................................................................................................................  dspstate ~
Amplification .......................................................................................  *~, /~, gain ~, normalize ~
Amplitude indicator ...............................................................................................  avg~, meter ~
Amplitude modulation .............................................................................................................  *~
Analog-to-digital converter ....................................................................................  adc~, ezadc~
Analysis of a signal ....................................................................................  capture ~, fft ~, scope ~
Average signal amplitude ......................................................................................................  avg~
Backward sample playback ..................................................................................  groove ~, play ~
Bandpass filter ..........................................................................................  noise ~, rand ~, reson ~
Bypassing a signal ......................................................................  gate ~, mute ~, pass ~, selector ~
Chorusing ...........................................................................................................  cycle ~, tapout ~
Clipping .................................................................................................  clip ~, dac~, normalize ~
Comb filter .......................................................................................................................  comb ~
Comparing signals .......................................  <~, ==~, >~, change ~, meter ~, scope ~, snapshot ~
Constant signal value .............................................................................................................  sig ~
Control function ....................................................................................  curve ~, function ~, line ~
Convert Max messages to signals ............................................  curve ~, line ~, peek~, poke ~, sig ~
Convert signals to Max messages .............................................  avg~, meter ~, peek~, snapshot ~
Cosine wave .............................................................................................................  cos ~, cycle ~
DC offset....................................................................................................  +~, -~, number ~, sig ~
Delay..........................................................................  allpass ~, comb ~, delay ~, tapin ~, tapout ~
Difference between samples...............................................................................  change ~, delta ~
Difference between signals...........................................................................................  -~, scope ~
Digital-to-analog converter ....................................................................................  dac~, ezdac~
Disabling part of a signal network ..............................................  gate ~, mute ~, pass ~, selector ~
Display signal value.........................................  capture ~, meter ~, number ~, scope ~, snapshot ~
Downsampling .......................................................................  avg~, number ~, sah~, snapshot ~
Duty cycle of a pulse wave.......................................................................................  <~, >~, train ~
Editing an audio sample...........................................................................  record ~, peek~, poke ~
Envelope following ......................................................................  adc~, ezadc~, function ~, line ~
Envelope generator ................................................................................  curve ~, function ~, line ~
Equalization ..............................................................  allpass ~, biquad ~, comb ~, lores ~, reson ~
Exponential curve function ......................................................  curve ~, gain ~, linedrive ~, pow ~
Feedback delayed signal .................  allpass ~, biquad ~, comb ~, lores ~, reson ~, tapin ~, tapout ~
Filter ...................................................  allpass ~, biquad ~, comb ~, lores ~, noise ~, reson ~, vst ~
Flanging ..............................................................................................................  cycle ~, tapout ~
Fourier analysis and synthesis .........................................................................................  fft ~, ifft ~
Frequency modulation ................................................................................  +~, cycle ~, phasor ~
Frequency-to-pitch conversion ............................................................................................  ftom
Function generator ........................................................  curve ~, function ~, line ~, peek~, poke ~
Global signal values.............................................................................................  receive ~, send ~
Hertz equivalent of a MIDI key number ......................................................................  ftom , mtof



MSP Object Thesaurus Keyword index

292 MSP Object Thesaurus

IIR filter ......................................................................  allpass ~, biquad ~, comb , lores ~, reson ~
Input received in audio input jack ..........................................................................  adc~, ezadc~
Inverting signals ...................................................................................................................  *~, -~
Level control .........................................................................................  *~, /~, gain ~, normalize ~
Level meter .......................................................................................................  meter ~, number ~
Limiter ..................................................................................................................  clip ~, lookup ~
Logical operations using signal values.............................................................  <~, ==~, >~, edge~
Logarithmic curve function ...................................  curve ~, gain ~, linedrive ~, log ~, pow ~, sqrt ~
Lookup table..................................  buffer ~, cycle ~, function ~, index ~, lookup ~, peek~, wave ~
Loop points in a sound file.................................................................................................... info ~
Looping a sample.....................................................................................  groove ~, info ~, wave ~
Lowpass filter .............................................................................................  lores ~, noise ~, rand ~
Max messages converted to signals .........................................  curve ~, line ~, peek~, poke ~, sig ~
Max messages derived from signals .............  avg~, edge~, meter ~, number ~, peek~, snapshot ~
MIDI control from MSP .......................................  avg~, ftom , function ~, number ~, snapshot ~
MIDI control of MSP............................................................................  curve ~, line ~, mtof , sig ~
Millisecond calculations ..................................................................  mstosamps ~, sampstoms ~
Mixing signals ...........................................................................................................................  +~
Multiplying signals ...................................................................................................................  *~
Noise ......................................................................................................................  noise ~, rand ~
Noise gate ............................................................................................................................  gate ~
Normalization .................................................................................................  *~, /~, normalize ~
Numerical display of a signal .....................................................  capture ~, number ~, snapshot ~
On/off audio switch .......................................................  adc~, dac~, dspstate ~, ezadc~, ezdac~
Oscillator ...............................................................................................  cycle ~, phasor ~, wave~
Oscilloscope.....................................................................................................................  scope ~
Output audio jack ...................................................................................................  dac~, ezdac~
Peak amplitude .................................................................................................................. meter ~
Periodic waves .......................................................................................  cycle ~, phasor ~, wave~
Phase distortion synthesis....................................................................................  kink ~, phasor ~
Phase modulation ...........................................................................................................  phasor ~
Pitch bend....................................................................................................................  ftom , mtof
Pitch-to-frequency conversion .............................................................................................  mtof
Playing audio ..........................................................................................................  dac~, ezdac~
Playing samples...............................................  buffer ~, groove ~, index ~, play ~, sfplay ~, wave~
Plug-in in VST format used in MSP ......................................................................................  vst ~
Pulse wave.....................................................................................................  <~, >~, clip ~, train ~
Ramp signal ............................................................................................................  curve ~, line ~
Random signal values.............................................................................................  noise ~, rand ~
Recording audio samples ............................................  adc~, ezadc~, poke ~, record ~, sfrecord ~
Repetition at sub-audio rates ..................................................................  cycle ~, phasor ~, train ~
Resonant filter ..........................................................  allpass ~, biquad ~, comb ~, lores ~, reson ~
Reverberation .........................................................................  allpass ~, comb ~, tapin ~, tapout ~
Reversed sample playback ...................................................................................  groove ~, play ~
Ring modulation .......................................................................................................................  *~
Sample and hold ...................................................................................................................  sah~



Keyword Index MSP Object Thesaurus

MSP Object Thesaurus 293

Sample index in a buffer.......................................................................................  count ~, index ~
Sample playback .............................................  buffer ~, groove ~, index ~, play ~, sfplay ~, wave~
Sample storage .................................................................................  buffer ~, record ~, sfrecord ~
Sampling rate ..................  adc~, buffer ~, count ~, dac~, dspstate ~, mstosamps ~, sampstoms ~
Sawtooth oscillator .........................................................................................................  phasor ~
Sine wave .................................................................................................................  cos ~, cycle ~
Sound Designer II saving and playing .....................................  buffer ~, info ~, sfplay ~, sfrecord ~
Spectrum measurement ..................................................................................................  fft ~, ifft ~
Start and end point of a sample ...................................................  groove ~, index ~, play ~, wave~
Subpatch control ...................................................................................  mute ~, receive ~, send ~
Subtractive synthesis .........................  allpass ~, biquad ~, comb ~, lores ~, noise ~, rand ~, reson ~
Switching signal flow on and off ................................................  gate ~, mute ~, pass ~, selector ~
Table lookup..................................  buffer ~, cycle ~, function ~, index ~, lookup ~, peek~, wave ~
Text file of signal samples ...............................................................................................  capture ~
Transfer function ................................................................................................  cycle ~, lookup ~
Triggering a Max message with an audio signal ...................................................  edge~, thresh ~
Varispeed sample playback..................................................................................  groove ~, play ~
Vector size ................................................................................................  adc~, dac~, dspstate ~
Velocity (MIDI) control of a signal .....................................................  curve ~, gain ~, line ~, sig ~
View a signal ..................................................  buffer ~, capture ~, number ~, scope~, snapshot ~
Waveshaping ..................................................................................................................  lookup ~
Wavetable synthesis .................................................................................  buffer ~, cycle ~, wave~
White noise .......................................................................................................................  noise ~
Windowing a portion of a signal ....................................  index ~, cycle ~, gate~, lookup ~, wave~



Index

294 Index

*~ 34, 177
+~ 178
-~ 179
/~ 180
<~ 181
==~ 182
>~ 183
abs~ 184
absolute value 184
absorption of sound waves 144
access the hard disk 95
ADAT 172
adc~ 84, 185
adding signals together 41, 178
additive synthesis 21, 63
AIFF 38, 85, 95, 272, 275
aliasing 17, 52, 156
allpass~ 186
amplification 177, 221, 244
amplitude 9, 126
amplitude adjustment 34
amplitude envelope 13, 60, 64, 99, 234
amplitude modulation 67, 71, 130
analog-to-digital conversion 15, 84, 185,
211
AppleTalk 26
ASCII 97
AtodB subpatch 46
attack, velocity control of 110
audio input 164, 185, 211
audio input and output 159
audio interface card 167
audio output 164, 206, 212
audio processing off for some objects 53,
189, 223, 266
Audiodriver files 159, 168
audiodrivers folder 167
Audiomedia II 170
AV connector 165
avg~ 188
balance between stereo channels 120
band-limited noise 256
band-limited pulse 156
bandpass filter 260
beats 44, 133
begin~ 53, 189

bell-like tone 65
biquad~ 190
buffer~ 38, 85, 192
capture~ 130, 195
cards, audio interface 167
carrier oscillator 68
change~ 196
chorus 151
clip~ 197
clipping 20, 34
comb~ 154, 198
comb filter 142, 154, 198
comparing signal values 181, 182, 183, 283
complex tone 9, 63
composite instrument sound 41
control rate 24
convolution 67
cos~ 200
cosine wave 31, 200, 204
count~ 86, 201
critical band 69
crossfade 41

constant intensity 122
linear 122
speaker-to-speaker 124

Csound 5
cue sample for playback 96
current file for playback 96
curve~ 202
cycle~ 31, 204
dac~ 206
DAE 170
dBtoA subpatch 105
DC offset 72, 178, 179, 245, 277
decibels 14, 46, 105, 221
default values 36
delay~ 207
delay 141, 207
delay line 207, 280, 281
delay line with feedback 144, 152, 154
delay time modulation 148
delta~ 208
difference frequency 44, 69, 133
Digidesign 165, 170
DigiSystem™ INIT 170
digital audio in and out 171



Index

Index 295

digital-to-analog converter 16, 31, 206, 212
diminuendo 61
Direct I/O MSP Audiodriver 170
disable audio of a subpatch 55
disk, soundfiles on 95
display signal 264
display signal amplitude 239, 278
display signal as text 195
display signal graphically 132
display the value of a signal 126, 245
divide one signal by another 180
Doppler effect 147
dsp object 173, 175
DSP Status window 159, 169
dspstate~ 132, 209
duty cycle 284
echo 141
edge~ 210
envelope 39
envelope generator 64, 217, 234
equal to comparison 182
equalization 186, 190, 198, 238, 260
exponent in a power function 101
exponential curve 105, 106, 111, 202, 221,
233, 255
Extensions folder 169
ezadc~ 84, 211
ezdac~ 38, 212
fade volume in or out 36
feedback in a delay line 144, 152, 154
fft~ 135, 214
file search path of Max 269, 270, 272
file, play AIFF 272
file, play sound 95
file, record AIFF 95, 275
filter

allpass 186
comb 198
lowpass 238
resonant bandpass 260
two-pole two-zero 190

flange 198
flanging 148
float-to-signal conversion 245, 277
FM 74, 76
foldover 17, 52, 156

Fourier synthesis 227
Fourier transform 12, 135, 214
frequency 9, 32
frequency domain 67, 135
frequency modulation 74, 76
frequency-to-MIDI conversion 216
ftom 216
function object 64, 217
gain~ 156, 221
gate~ 44, 223
greater than comparison 183
groove~ 88, 99, 114, 225
hard disk, soundfiles on 95
harmonically related sinusoids 11, 56
harmonicity ratio 76
hertz 9
ifft~ 135, 227
index~ 86, 229
info~ 89, 230
input 185, 211
input source 84, 160, 164
interference between waves 44, 133
interpolation 32, 39, 86, 128, 204, 219, 234,
245
interrupt 161
inverse fast Fourier transform 135, 227
key region 114
kink~ 232
Korg 1212I/O 174
LED display 126
less than comparison 181
level meter 239
level of a signal 34
LFO 106
limiting amplitude of a signal 197, 244
line~ 35, 234
line segment function 39
linear crossfade 122
linear mapping 104
linedrive 233
localization 120
log~ 235
logarithmic curve 202, 221, 233, 235
logarithmic scale 14, 46
logical signal transitions 210
lookup~ 80, 236



Index

296 Index

lookup table 80, 92, 236, 249
loop an audio sample 88, 225
lores~ 238
loudness 14, 105
low-frequency oscillator 106
lowpass filter 238
lowpass filtered noise 256
Lucid PCI24 171
map subpatch 105
mapping a range of numbers 104
Max messages 32
meter~ 126, 239
metronome 284
MIDI 5, 103, 108
MIDI controller 29
MIDI note value 216
MIDI panning 120
MIDI-to-amplitude conversion 149, 156,
221
MIDI-to-frequency conversion 110, 241
millisecond scheduler of Max 23, 30
millisecond-to-sample conversion 240
mixing 41
mixing signals 178
modulation

amplitude 71
delay time 148
frequency 74, 76
ring 67

modulation index 76
modulation wheel 103, 108
modulator 68
Monitors & Sound control panel 163
MSP Tutorial 28
mstosamps~ 240
mtof 110, 241
multiply one signal by another 67, 177
mute~ 54, 242
mute audio of a subpatch 54, 242, 248
noise 13, 40, 151, 243, 256
noise~ 40, 243
normalize~ 146, 244
number~ 126, 245
number-to-signal conversion 245, 277
Nyquist rate 17, 52, 92, 155
on and off, turning audio 185, 206, 211, 212

oscillator 32, 204
oscilloscope 132, 264
output 164, 206, 212
Overdrive 162
panning 120
partial 11, 63
pass~ 248
Patcher, audio on in one 51
PCI24 171
PCI24 Driver API 172
pcontrol to mute a subpatch 55
peak amplitude 9, 128, 146, 239
peek~ 249
period of a wave 9
phase distortion synthesis 232
phase modulation 232, 251
phase offset 48
phasor~ 40, 251
pitch bend 106, 108
pitch-to-frequency conversion 100, 106,
241
play~ 86, 252
play AIFF 272
play audio sample 86, 88, 225, 229, 252
play audio sample as waveform 288
play sound 95
plug-in 286
poke~ 253
polyphony 108, 114
pow~ 101, 255
PowerPC 4, 26
precision of floating point numbers 59
pulse train 284
Q of a filter 238, 260
RAM 95
RAM allocation 26
rand~ 151, 256
random signal 40, 243, 256
receive~ 43, 257
record~ 85, 258
record audio 85, 258
record soundfile 95, 275
reflection of sound waves 144
reson~ 260
resonance of a filter 238, 260
ring modulation 67



Index

Index 297

Roads, Curtis 8
routing a signal 44, 223
S/PDIF 171
sah~ 262
sample and hold 15, 262
sample number 201
sample stored in memory 192
sample, read single 229, 249
sample, write single 249, 253
sample-to-millisecond conversion 263
sampler 114
sampling rate 16, 24, 161, 164, 209

of AIFF file 116, 230
sampstoms~ 263
save a sound file 86
sawtooth wave 40, 52, 251
Scheduler in Audio Interrupt 162
scope~ 132, 264
search path 269, 270, 272
selector~ 51, 266
semitone 100
send~ 43, 268
sfinfo~ 269
sflist~ 270
sfplay~ 272
sfrecord~ 275
sidebands 69, 73, 76
sig~ 47, 277
signal network 5, 23, 30
signal of constant value 245, 277
signal-to-float conversion 245, 278
simple harmonic motion 9
sine wave 8, 48, 204
slapback echo 141
snapshot~ 129, 278
Sonorus StudI/O 172
sound 8, 230
Sound control panel 163
Sound Designer II 38, 85, 272, 275
sound input 84, 160, 164, 185, 211
Sound Manager 160, 163
Sound Monitoring Source 165
sound output 164, 206, 212
spectrum 11, 67, 135
sqrt~ 279
square root of signal value 279

StudI/O 172
subpatch, mute audio of 54, 242
support, technical 170
sustain 217
switch 51, 266
synthesis techniques 63
synthesis, additive 63
tapin~ 141, 280
tapout~ 141, 281
technical support 170
temperament, equal 241
test tone 29
text, viewing a signal as 195
thresh~ 283
threshold detection 283
timbre 11
train~ 284
transfer function 80, 236
tremolo 68, 72, 130
tuning, equal temperament 241
Tutorial, MSP 28
variable speed sample playback 86, 88, 225,
252
vector size 161, 209
velocity sensitivity 108, 156
velocity-to-amplitude conversion 221
vibrato 68, 74, 100, 106
vst~ 286
VST plug-in file 286
wave~ 90, 288
waveshaping synthesis 80, 94
wavetable synthesis 31, 38, 90, 204, 288
white noise 13, 40, 243
windowing 138


	Table of Contents
	Introduction
	Digital Audio
	Sound
	Digital representation of sound
	Limitations of digital audio
	Advantages of digital audio

	How MSP Works
	Max patches and the MSP "signal network"
	Audio rate and control rate
	The link between Max and MSP
	Limitations of MSP
	Advantages of MSP

	Tutorial
	Introduction
	Fundamentals (1-6)
	1. Test tone
	2. Adjustable oscillator
	3. Wavetable oscillator
	4. Routing signals
	5. Turning signals on and off
	6. Review

	Synthesis (7-12)
	7. Additive synthesis
	8. Tremolo and ring modulation
	9. Amplitude modulation
	10. Vibrato and FM
	11. Frequency modulation
	12. Waveshaping

	Sampling (13-17)
	13. Recording and playback
	14. Playback with loops
	15. Variable-length wavetable
	16. Record and play sound files
	17. Review

	MIDI Control (18-21)
	18. Mapping MIDI to MSP
	19. Synthesizer
	20. Sampler
	21. Panning

	Analysis (22-24)
	22. Viewing signal data
	23. Oscilloscope
	24. Using the FFT

	Processing (25-29)
	25. Delay lines
	26. Delay lines with feedback
	27. Flange
	28. Chorus
	29. Comb filter


	Audio Input and Output
	DSP Status window
	Sound Manager
	Audio interface cards
	Notes on specific audio cards

	Objects
	*~
	+~
	-~
	/~
	<~
	==~
	>~
	abs~
	adc~
	allpass~
	avg~
	begin~
	biquad~
	buffer~
	capture~
	change~
	clip~
	comb~
	cos~
	count~
	curve~
	cycle~
	dac~
	delay~
	delta~
	dspstate~
	edge~
	ezadc~
	ezdac~
	fft~
	ftom
	function
	gain~
	gate~
	groove~
	ifft~
	index~
	info~
	kink~
	linedrive
	line~
	log~
	lookup~
	lores~
	meter~
	mstosamps~
	mtof
	mute~
	noise~
	normalize~
	number~
	pass~
	peek~
	phasor~
	play~
	poke~
	pow~
	rand~
	receive~
	record~
	reson~
	sah~
	sampstoms~
	scope~
	selector~
	send~
	sfinfo~
	sflist~
	sfplay~
	sfrecord~
	sig~
	snapshot~
	sqrt~
	tapin~
	tapout~
	thresh~
	train~
	vst~
	wave~

	Messages to dsp
	Thesaurus
	Index

